精英家教网 > 高中数学 > 题目详情
设椭圆
x2
m2
+
y2
n2
=1
(m>0,n>0)的一个焦点与抛物线x2=4y的焦点相同,离心率为
1
3
则此椭圆的方程为(  )
A.
x2
9
+
y2
8
=1
B.
x2
8
+
y2
9
=1
C.
x2
36
+
y2
32
=1
D.
x2
32
+
y2
36
=1
抛物线x2=4y的焦点为(0,1),
∴椭圆的焦点在y轴上,
∴c=1,
由离心率 e=
1
3
,可得a=3,∴b2=a2-c2=8,
故椭圆的标准方程为
x2
8
+
y2
9
=1

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
m2
+
y2
n2
=1
(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为
1
2
,则此椭圆的方程为(  )
A、
x2
12
+
y2
16
=1
B、
x2
16
+
y2
12
=1
C、
x2
48
+
y2
64
=1
D、
x2
64
+
y2
48
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
m2
+
y2
n2
=1
,双曲线
x2
m2
-
y2
n2
=1
、抛物线y2=2(m+n)x(其中m>n>0)的离心率分别为e1,e2,e3,则(  )
A、e1e2>e3
B、e1e2<e3
C、e1e2=e3
D、e1e2与e3大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设双曲线与椭圆
x2
27
+
y2
36
=1
有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求此双曲线的标准方程.
(2)设椭圆
x2
m2
+
y2
n2
=1
(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为
1
2
,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设椭圆
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为
1
2
,求椭圆的标准方程.
(2)设双曲线与椭圆
x2
27
+
y2
36
=1有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为
1
2
,则此椭圆的短轴长为(  )

查看答案和解析>>

同步练习册答案