精英家教网 > 高中数学 > 题目详情
15.如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求侧棱AA1与平面AB1C所成角的正弦值的大小;
(2)已知点D满足$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由.

分析 (1)推导出A1O⊥平面ABC,BO⊥AC,以O为坐标原点,建立如图所示的空间直角坐标系O-xyz,利用向量法能求出侧棱AA1与平面AB1C所成角的正弦值.
(2)假设存在点P符合题意,则点P的坐标可设为P(0,y,z),则$\overrightarrow{DP}=(\sqrt{3},y,z)$.利用向量法能求出存在点P,使DP∥平面AB1C,其坐标为(0,0,$\sqrt{3}$),即恰好为A1点.

解答 解:(1)∵侧面A1ACC1⊥底面ABC,作A1O⊥AC于点O,
∴A1O⊥平面ABC.
又∠ABC=∠A1AC=60°,且各棱长都相等,
∴AO=1,OA1=OB=$\sqrt{3}$,BO⊥AC.…(2分)
故以O为坐标原点,建立如图所示的空间直角坐标系O-xyz,
则A(0,-1,0),B($\sqrt{3}$,0,0),A1(0,0,$\sqrt{3}$),C(0,1,0),
∴$\overrightarrow{A{A}_{1}}$=(0,1,$\sqrt{3}$),$\overrightarrow{A{B}_{1}}$=($\sqrt{3},0,-\sqrt{3}$),$\overrightarrow{AC}$=(0,2,0).…(4分)
设平面AB1C的法向量为$\overrightarrow{n}=(x,y,z)$,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=\sqrt{3}x+2y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1).
设侧棱AA1与平面AB1C所成角的为θ,
则sinθ=|cos<$\overrightarrow{A{A}_{1}}$,$\overrightarrow{n}$>|=|$\frac{\overrightarrow{A{A}_{1}}•\overrightarrow{n}}{|\overrightarrow{A{A}_{1}}|•|\overrightarrow{n}|}$|=$\frac{\sqrt{3}}{2\sqrt{2}}=\frac{\sqrt{6}}{4}$,
∴侧棱AA1与平面AB1C所成角的正弦值为$\frac{\sqrt{6}}{4}$.…(6分)
(2)∵$\overrightarrow{BD}$=$\overrightarrow{BA}+\overrightarrow{BC}$,而$\overrightarrow{BA}=(-\sqrt{3},-1,0)$,$\overrightarrow{BC}=(-\sqrt{3},1,0)$,
∴$\overrightarrow{BD}$=(-2$\sqrt{3}$,0,0),又∵B($\sqrt{3},0,0$),∴点D(-$\sqrt{3}$,0,0).
假设存在点P符合题意,则点P的坐标可设为P(0,y,z),∴$\overrightarrow{DP}=(\sqrt{3},y,z)$.
∵DP∥平面AB1C,$\overrightarrow{n}$=(-1,0,1)为平面AB1C的法向量,
∴由$\overrightarrow{AP}$=λ$\overrightarrow{A{A}_{1}}$,得$\left\{\begin{array}{l}{y+1=λ}\\{\sqrt{3}=λ\sqrt{3}}\end{array}\right.$,∴y=0.…(10分)
又DP?平面AB1C,故存在点P,使DP∥平面AB1C,其坐标为(0,0,$\sqrt{3}$),
即恰好为A1点.…(12分)

点评 本题考查线面角的正弦值的求法,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.四面体ABCD中,AB=2,BC=3,CD=4,DB=5,AC=$\sqrt{13}$,AD=$\sqrt{29}$,则四面体ABCD外接球的表面积是29π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,出行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一人走了378里路,第一天健步行走,从第二天起因脚疼每天走的路程为前一天的一半,走了6天后到达目的地.”问此人最后一天走了(  )
A.6里B.12里C.24里D.36里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{lnx}{x},g(x)=x({lnx-\frac{ax}{2}-1})$.
(1)求y=f(x)的最大值;
(2)当$a∈[{0,\frac{1}{e}}]$时,函数y=g(x),(x∈(0,e])有最小值. 记g(x)的最小值为h(a),求函
数h(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,给定由10个点(任意相邻两点距离为1,)组成的正三角形点阵,在其中任意取三个点,以这三个点为顶点构成的正三角形的个数是(  )
A.12B.13C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=loga(2+x)在区间(-2,+∞)是单调递减函数,则a的取值范围是(  )
A.(0,1)B.(0,2)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若角α和β的终边关于直线x+y=0对称,且α=-$\frac{π}{3}$,则角β的集合是{ β|β=2kπ-$\frac{π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设$f(x)={sin^2}x+\sqrt{3}sinxcosx-\frac{1}{2}(x∈R)$.
(1)求函数f(x)的最小正周期与值域;
(2)设△ABC内角A,B,C的对边分别为a,b,c,A为锐角,$a=2\sqrt{3},c=4$,若f(A)=1,求A,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,正四面体ABCD的棱长为1,点E是棱CD的中点,则$\overrightarrow{AE}$•$\overrightarrow{AB}$=(  )
A.-$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案