精英家教网 > 高中数学 > 题目详情

【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.

女生

男生

总计

获奖

不获奖

总计

附表及公式:

其中,

【答案】(Ⅰ);(Ⅱ)详见解析.

【解析】

(Ⅰ)根据概率的性质知所有矩形的面积之和等于列式可解得;

(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得.

解:(Ⅰ),

(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,

列联表如下:

女生

男生

总计

获奖

不获奖

总计

因为,

所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关.”

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面积为,求C的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足

(1)求的通项公式;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,试比较的大小关系;

2)猜想的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下扇形统计图:

建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是(

A.新农村建设后,种植收入略有增加.

B.新农村建设后,其他收入增加了一倍以上.

C.新农村建设后,养殖收入不变.

D.新农村建设后,种植收入在经济收入中所占比重大幅下降.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,过的直线交椭圆于两点,若椭圆的离心率为的周长为16.

(1)求椭圆的方程;

(2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,设弦的中点分别为.证明:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于MN两点,且

(1)求抛物线C的方程;

(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于AB,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)

经常网购

偶尔或不用网购

合计

男性

50

100

女性

70

100

合计

(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?

(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;

②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.

参考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①残差平方和越小的模型,拟合的效果越好;

②用相关指数来刻画回归效果,越小,说明模型拟合的效果越好;

③散点图中所有点都在回归直线附近;

④随机误差满足,其方差的大小可用来衡量预报精确度.

其中正确命题的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案