精英家教网 > 高中数学 > 题目详情
某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
xi(月)12345
yi(千克)0.50.91.72.12.8
(1)在给出的坐标系中,画出关于x,y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程
?
y
=
b
x+
?
a

(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克)
(参考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n(
.
x
)
2
?
a
=
.
y
-
b
.
x
考点:线性回归方程
专题:计算题,概率与统计
分析:(1)利用所给数据,可得散点图;
(2)利用公式,计算回归系数,即可得到回归方程;
(3)x=12代入回归方程,即可得到结论.
解答: 解:(1)散点图如图所示…(3分)
(2)由题设
.
x
=3,
.
y
=1.6,…(4分)
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n(
.
x
)
2
=
29.8-24
55-45
=0.58,
a=
.
y
-
b
.
x
=-0.14…(9分)
故回归直线方程为y=0.58x-0.14…(10分)
(3)当x=12时,y=0.58×12-0.14=6.82…(11分)
饲养满12个月时,这种鱼的平均体重约为6.82千克.…(12分)
点评:本题考查回归分析的初步运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算
2i
1-i
的结果是(  )
A、-1+iB、-1-i
C、1+iD、1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n≥2且n∈N*,对n2进行如下方式的“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么361的“分拆”所得的数的中位数是(  )
A、19B、21C、29D、361

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为了解高三女生的身高状况,随机抽取了100名女生,按身高分组得到频率分布表为:
编号分组频数频率 
A组[150,155)50.050 
B组[155,160)m0.350 
C组[160,165)30
D组[165,170)x0.200 
E组[170,175)100.100 
(Ⅰ)求表中的m,n,x的值,并画出频率公布直方图;
(Ⅱ)由于该校要组成女子篮球队,决定在C、D、E组中用分层抽样方法抽取6人,求各组抽取的人数;
(Ⅲ)在(Ⅱ)中被抽取的6人中,随机抽取2名队员,求D组至少有一名学生被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>b>0)的右焦点与抛物线y2=4x的焦点F重合,点A是两曲线的一个交点,且AF⊥x轴,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l与抛物线y2=2x相交于P、Q两点,如果
OP
OQ
=3,O为坐标原点.证明:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列中a3=2,a2+a4=
20
3
.则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=2an+1
(1)求数列{an}的通项公式;
(2)若{bn}的前n项和为Tn,且Tn+
2n
an+1
=c(c为常数),证明b2+b4+…+b2n
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*)中的前8项是一个以2为公比,以
1
4
为首项的等比数列,从第8项起是一个等差数列,公差为-3,求:
(1)数列{an}的通项公式;
(2)数列{an}的前n项和Sn的公式;
(3)当n为何值时,Sn<0.

查看答案和解析>>

同步练习册答案