已知是函数的一个极值点,其中
(1)求与的关系式;
(2)求的单调区间;
(3)设函数函数g(x)= ;试比较g(x)与的大小。
(1)
(2) 当时,在单调递减,在单调递增,在上单调递减.同理可得:当时,在 单调递增,在单调递减,在上单调递增
(3) 时 ,g(x) 时, g(x)
【解析】
试题分析:解(I)因为是函数的一个极值点,所以,即,所以 3分
(II)由(I)知,=…5分
当时,有,当变化时,与的变化如下表:
1 |
|||||
0 |
0 |
||||
|
|
|
|
|
|
调调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
故有上表知,当时,在单调递减,在单调递增,在上单调递减.同理可得:当时,在 单调递增,在单调递减,在上单调递增. 9分
(III)设函数h(x)=-==
由,且,故,
令所以m(x)在为增函数,故
所以h(x)在,h(x),故g(x)
当,
令所以m(x)在为减函数,故
所以h(x)在,h(x),故g(x)
综上时 ,g(x) 14分
时, g(x)
考点:导数的运用
点评:解决的关键是利用导数的符号与函数单调性的关系来确定单调性,以及极值问题,并利用单调性来比较大小,属于中档题。
科目:高中数学 来源:2012-2013学年山东师大附中高三12月(第三次)模拟检测理科数学试卷(解析版) 题型:解答题
(本题满分12分)已知是函数的一个极值点.
(Ⅰ)求的值;
(Ⅱ)当,时,证明:
查看答案和解析>>
科目:高中数学 来源:2013届浙江省宁波万里国际学校高二下期中文科数学试卷(解析版) 题型:解答题
已知是函数的一个极值点,其中,
(1)求与的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点的切线斜率恒大于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
已知是函数的一个极值点,其中。
(Ⅰ)求与的关系表达式;
(Ⅱ)求的单调区间;
(Ⅲ)当时,函数的图象上任意一点的切线斜率恒大于,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2013届广东省高二下学期第一次月考理科数学试卷 题型:解答题
(本小题满分14分)
已知是函数的一个极值点,其中,
(1)求与的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com