精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,若将判断框内“”改为关于的不等式“”且要求输出的结果不变,则正整数的取值是

A. 4 B. 5 C. 6 D. 7

【答案】C

【解析】

模拟执行程序框图,依次写出每次循环得到的的值,当时判断框中的条件满足,执行路径,退出循环输出结果126,若将判断框内改为关于的不等式且要求输出的结果不变,则条件成立,可得正整数的取值为6

框图首先赋值,执行

判断框中的条件不满足,执行

判断框中的条件不满足,执行

判断框中的条件不满足,执行

判断框中的条件不满足,执行

此时判断框中的条件满足,执行路径,退出循环输出结果126

若将判断框内改为关于的不等式且要求输出的结果不变,

则条件成立,可得正整数的取值为6.故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点的直线l与圆相交于AB两点,且,则直线l的方程为( )

A. B. ,或

C. ,或 D. ,或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中,平面..点的交点,点在线段上且.

(1)证明:平面

(2)求直线与平面所成角的正弦值;

(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线).

1求直线经过的定点坐标;

2若直线负半轴于,交轴正半轴于为坐标系原点,的面积为,求的最小值并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,:函数上单调递减, :函数的图象与轴交于不同的两点.如果, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地新建一家服装厂,从今年7月份开始投产,并且前4个月的产量分别为万件、万件、万件、万件.由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好.为了推销员在推销产品时接收订单不产生过多或过少的情况,需要估测以后几个月的产量,假如你是厂长,就月份x、产量y给出四种函数模型:.你将利用零一种模型去估算以后几个月的产量?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证:

1)角为第二或第三象限角的充要条件是

2)角为第三或第四象限角的充要条件是

3)角为第一或第四象限角的充要条件是

4)角为第一或第三象限角的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都要网络报价一次,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的数据,统计了最近个月参与竞拍的人数(见下表):

月份

月份编号

竞拍人数(万人)

(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数(万人)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测月份参与竞拍的人数.

(2)某市场调研机构从拟参加月份车牌竞拍人员中,随机抽取了人,对他们的拟报价价格进行了调查,得到如下频数分布表和频率分布直方图:

报价区间(万元)

频数

(i)求的值及这位竞拍人员中报价大于万元的概率;

(ii)若月份车牌配额数量为,假设竞拍报价在各区间分布是均匀的,请你根据以上抽样的数据信息,预测(需说明理由)竞拍的最低成交价.

参考公式及数据:①回归方程,其中

.

查看答案和解析>>

同步练习册答案