精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,则输出的k的值为(

A.7
B.6
C.5
D.4

【答案】D
【解析】解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,
可知:该程序的作用是:
输出不满足条件S=0+1+2+8+…<100时,k+1的值.
第一次运行:满足条件,s=1,k=1;
第二次运行:满足条件,s=3,k=2;
第三次运行:满足条件,s=11<100,k=3;满足判断框的条件,继续运行,
第四次运行:s=1+2+8+211>100,k=4,不满足判断框的条件,退出循环.
故最后输出k的值为4.
故选:D.
分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出输出不满足条件S=0+1+2+8+…<100时,k+1的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,锐角△ABC中, = = ,点M为BC的中点. (Ⅰ)试用 表示
(Ⅱ)若| |=5,| |=3,sin∠BAC= ,求中线AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a≤x≤a+8},B={x|x<﹣1或x>5},
(1)当a=0时,求A∩B,A∪(CRB);
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用m,n表示两条不同的直线,α,β表示两个不同的平面,给出下列命题: ①若m⊥n,m⊥α,则n∥α;
②若m∥α,α⊥β则m⊥β;
③若m⊥β,α⊥β,则m∥α;
④若m⊥n,m⊥α,n⊥β,则α⊥β,
其中,正确命题是(
A.①②
B.②③
C.③④
D.④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请认真阅读下列程序框图,然后回答问题,其中n0∈N.
(1)若输入n0=0,写出所输出的结果;
(2)若输出的结果中有5,求输入的自然数n0的所有可能的值;
(3)若输出的结果中,只有三个自然数,求输入的自然数n0的所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥 中,底面 是边长为 2 的正三角形,顶点 在底面上的射影为的中心,若的中点,且直线与底面所成角的正切值为,则三棱锥外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率为﹣3,求a,b的值;
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景点拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为36米,其中大圆弧所在圆的半径为14米,设小圆弧所在圆的半径为米,圆心角为(弧度).

关于的函数关系式;

已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为16/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,互相垂直的两条公路AP、AQ旁有一矩形花园ABCD,现欲将其扩建成一个更大的三角形花园AMN,要求点M在射线AP上,点N在射线AQ上,且直线MN过点C,其中AB=36米,AD=20米.记三角形花园AMN的面积为S. (Ⅰ)问:DN取何值时,S取得最小值,并求出最小值;
(Ⅱ)若S不超过1764平方米,求DN长的取值范围.

查看答案和解析>>

同步练习册答案