精英家教网 > 高中数学 > 题目详情

【题目】的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R.

1)求R的方程;

2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点QQ不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.

【答案】(1)(2)存在

【解析】

试题(1)根据切线长定理可得,AB-AC=2.根据双曲线的定义可得点A的轨迹是双曲线的一支,即可得到轨迹方程.

(2)因为恒成立,通过化简可得等价结论,QC∠MQN的角平分线.由直线MN垂直于x轴,显然存在点Q.MN不垂直x轴时,依题意所求的结论等价转化于,通过联立方程,利用韦达定理,即可求得点Q的横坐标.

试题解析:(1)设点,由题知|AB|-|AC|=|BE|-|CE|=|CE|+2|OE|-|CE|=2

根据双曲线定义知,点A的轨迹是以BC为焦点,实轴长为2的双曲线的右支除去点E10),故R的方程为

2)设点由(I)可知

当直线轴时

轴上任何一点处都能使得成立

当直线MN不与轴垂直时,设直线

要使,只需成立即

,故所求的点Q的坐标为

使成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,cos A=,cos C=

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充,已知金字塔的每一条棱和边都相等.

(1)求证:直线AC垂直于直线SD

(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,设

1)如果为奇函数,求实数满足的条件;

2)在(1)的条件下,若函数在区间上为增函数,求的取值范围;

3)若对任意的恒有成立.证明:当时,成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,记在区间的最大值为,最小值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A1A2Am为集合A{12n}n≥2nN*)的子集,且满足两个条件:

A1A2AmA

②对任意的{xy}A,至少存在一个i{123m},使Ai∩{xy}{x}{y}.则称集合组A1A2Am具有性质P

如图,作nm列数表,定义数表中的第k行第l列的数为akl

a11

a12

a1m

a21

a22

a2m

an1

an2

anm

1)当n4时,判断下列两个集合组是否具有性质P,如果是请画出所对应的表格,如果不是请说明理由;

集合组1A1{13}A2{23}A3{4}

集合组2A1{234}A2{23}A3{14}

2)当n7时,若集合组A1A2A3具有性质P,请先画出所对应的73列的一个数表,再依此表格分别写出集合A1A2A3

3)当n100时,集合组A1A2At是具有性质P且所含集合个数最小的集合组,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的个数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)的最小周期为.

1)求的值及的单调递增区间;

2)将函数的图象向右平移个单位,再将图象上各点的横坐标缩短为原来的(纵坐标不变)得到函数的图象,若关于x的方程在区间上有且只有一个解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,实数

1)设,判断函数上的单调性,并说明理由;

2)设时,的定义域和值域都是,求的最大值;

3)若不等式恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(|x|﹣b)2+c,函数g(x)=x+m.

(1)当b=2,m=﹣4时,f(x)g(x)恒成立,求实数c的取值范围;

(2)当c=﹣3,m=﹣2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.

查看答案和解析>>

同步练习册答案