£¨2012•É½¶«£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬FÊÇÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µã£¬MÊÇÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã£¬¹ýM£¬F£¬OÈýµãµÄÔ²µÄÔ²ÐÄΪQ£¬µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ
3
4
£®
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚµãM£¬Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨¢ó£©ÈôµãMµÄºá×ø±êΪ
2
£¬Ö±Ïßl£ºy=kx+
1
4
ÓëÅ×ÎïÏßCÓÐÁ½¸ö²»Í¬µÄ½»µãA£¬B£¬lÓëÔ²QÓÐÁ½¸ö²»Í¬µÄ½»µãD£¬E£¬Çóµ±
1
2
¡Ük¡Ü2ʱ£¬|AB|2+|DE|2µÄ×îСֵ£®
·ÖÎö£º£¨¢ñ£©Í¨¹ýF£¨0£¬
P
2
£©£¬Ô²ÐÄQÔÚÏ߶ÎOFƽ·ÖÏßy=
p
4
ÉÏ£¬ÍƳöÇó³öp=1£¬ÍƳöÅ×ÎïÏßCµÄ·½³Ì£®
£¨¢ò£©¼ÙÉè´æÔÚµãM£¨x0£¬
x02
2
£©£¬£¨x0£¾0£©Âú×ãÌõ¼þ£¬Å×ÎïÏßCÔÚµãM´¦µÄÇÐÏßµÄбÂÊΪº¯ÊýµÄµ¼Êý£¬Çó³öQµÄ×ø±ê£¬ÀûÓÃ|QM|=|OQ|£¬Çó³öM£¨
2
£¬1
£©£®Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓëµãM£®
£¨¢ó£©µ±x0=
2
ʱ£¬Çó³ö¡ÑQµÄ·½³ÌΪ£®ÀûÓÃÖ±ÏßÓëÅ×ÎïÏß·½³ÌÁªÁ¢·½³Ì×飮ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬Çó³ö|AB|2£®Í¬ÀíÇó³ö|DE|2£¬Í¨¹ý|AB|2+|DE|2µÄ±í´ïʽ£¬Í¨¹ý»»Ôª£¬ÀûÓõ¼ÊýÇó³öº¯ÊýµÄ×îСֵ£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖªF£¨0£¬
P
2
£©£¬Ô²ÐÄQÔÚÏ߶ÎOFƽ·ÖÏßy=
p
4
ÉÏ£¬
ÒòΪÅ×ÎïÏßCµÄ±ê×¼·½³ÌΪy=-
p
2
£¬
ËùÒÔ
3p
4
=
3
4
£¬¼´p=1£¬
Òò´ËÅ×ÎïÏßCµÄ·½³Ìx2=2y£®
£¨¢ò£©¼ÙÉè´æÔÚµãM£¨x0£¬
x02
2
£©£¬£¨x0£¾0£©Âú×ãÌõ¼þ£¬
Å×ÎïÏßCÔÚµãM´¦µÄÇÐÏßµÄбÂÊΪ
y¡ä
|
 
x=x0
=(
x2
2
) ¡ä  
|
 
x=x0
=x0£®
Áîy=
1
4
µÃ£¬xQ=
x0
2
+
1
4x0
£¬
ËùÒÔQ£¨
x0
2
+
1
4x0
£¬
1
4
£©£¬
ÓÖ|QM|=|OQ|£¬
¹Ê( -
x0
2
+
1
4x0
)
2
+(
1
4
-
x02
2
2
=(
x0
2
+
1
4x0
)
2
+
1
16
£¬
Òò´Ë(
1
4
-
x02
2
2
=
9
16
£®ÓÖx0£¾0£®
ËùÒÔx0=
2
£¬´ËʱM£¨
2
£¬1
£©£®
¹Ê´æÔÚµãM£¨
2
£¬1
£©£¬Ê¹µÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓëµãM£®
£¨¢ó£©µ±x0=
2
ʱ£¬ÓÉ£¨¢ò£©µÄQ£¨
5
2
8
£¬
1
4
£©£¬¡ÑQµÄ°ë¾¶Îª£ºr=
(
5
2
8
)
2
+(
1
4
)
2
=
3
6
8
£®
ËùÒÔ¡ÑQµÄ·½³ÌΪ(x-
5
2
8
)
2
+(y-
1
4
)
2
=
27
32
£®
ÓÉ
y=
1
2
x2
y=kx+
1
4
£¬ÕûÀíµÃ2x2-4kx-1=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÓÚ¡÷=16k2+8£¾0£¬x1+x2=2k£¬x1x2=-
1
2
£¬
ËùÒÔ|AB|2=£¨1+k2£©[£¨x1+x2£©2-4x1x2]=£¨1+k2£©£¨4k2+2£©£®
ÓÉ
(x-
5
2
8
)
2
+(y-
1
4
)
2
=
27
32
y=kx+
1
4
£¬ÕûÀíµÃ£¨1+k2£©x2-
5
2
4
x-
1
16
=0
£¬
ÉèD£¬EÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x3£¬y3£©£¬£¨x4£¬y4£©£¬
ÓÉÓÚ¡÷=
k2
4
+
27
8
£¾0£¬x3+x4=
5
2
4(1+ k 2)
£¬x3x4=-
1
16(1+ k 2)
£®
ËùÒÔ|DE|2=£¨1+k2£©[£¨x3+x4£©2-4x3x4]=
25
8(1+ k 2)
+
1
4
£¬
Òò´Ë|AB|2+|DE|2=£¨1+k2£©£¨4k2+2£©+
25
8(1+ k 2)
+
1
4
£¬Áî1+k2=t£¬ÓÉÓÚ
1
2
¡Üt¡Ü5
£¬Ôò
5
4
¡Üt¡Ü5
£¬
ËùÒÔ|AB|2+|DE|2=t£¨4t-2£©+
25
8t
+
1
4
=4t2-2t+
25
8t
+
1
4
£¬
Éèg£¨t£©=4t2-2t+
25
8t
+
1
4
£¬t¡Ê [
5
4
£¬5]
£¬ÒòΪg¡ä£¨t£©=8t-2-
25
8t2
£¬
ËùÒÔµ±t¡Ê [
5
4
£¬5]
£¬g¡ä£¨t£©¡Ýg¡ä£¨
5
4
£©=6£¬
¼´º¯Êýg£¨t£©ÔÚt¡Ê [
5
4
£¬5]
ÊÇÔöº¯Êý£¬ËùÒÔµ±t=
5
4
ʱ£¬g£¨t£©È¡×îСֵ
13
2
£¬
Òò´Ëµ±k=
1
2
ʱ£¬|AB|2+|DE|2µÄ×îСֵΪ
13
2
£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬Å×ÎïÏߵıê×¼·½³Ì£¬Å×ÎïÏߵļòµ¥ÐÔÖÊ£¬Éè¶ø²»ÇóµÄ½âÌâ·½·¨£¬ÏÒ³¤¹«Ê½µÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•É½¶«£©ÔÚij´Î²âÁ¿Öеõ½µÄAÑù±¾Êý¾ÝÈçÏ£º82£¬84£¬84£¬86£¬86£¬86£¬88£¬88£¬88£¬88£®ÈôBÑù±¾Êý¾ÝÇ¡ºÃÊÇAÑù±¾Êý¾Ý¶¼¼Ó2ºóËùµÃÊý¾Ý£¬ÔòA£¬BÁ½Ñù±¾µÄÏÂÁÐÊý×ÖÌØÕ÷¶ÔÓ¦ÏàͬµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•É½¶«£©ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªsinB£¨tanA+tanC£©=tanAtanC£®
£¨¢ñ£©ÇóÖ¤£ºa£¬b£¬c³ÉµÈ±ÈÊýÁУ»
£¨¢ò£©Èôa=1£¬c=2£¬Çó¡÷ABCµÄÃæ»ýS£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•É½¶«£©ÔÚÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎABCDÊǵÈÑüÌÝÐΣ¬AB¡ÎCD£¬¡ÏDAB=60¡ã£¬FC¡ÍƽÃæABCD£¬AE¡ÍBD£¬CB=CD=CF£®
£¨¢ñ£©ÇóÖ¤£ºBD¡ÍƽÃæAED£»
£¨¢ò£©Çó¶þÃæ½ÇF-BD-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•É½¶«£©ÔڵȲîÊýÁÐ{an}ÖУ¬a3+a4+a5=84£¬a9=73£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©¶ÔÈÎÒâm¡ÊN*£¬½«ÊýÁÐ{an}ÖÐÂäÈëÇø¼ä£¨9m£¬92m£©ÄÚµÄÏîµÄ¸öÊý¼ÇΪbm£¬ÇóÊýÁÐ{bm}µÄÇ°mÏîºÍSm£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸