精英家教网 > 高中数学 > 题目详情

【题目】(本小题12分)已知函数

(1)=0,判断函数的单调性;

(2)时,<0恒成立,求的取值范围

【答案】(1)上减函数,上增函数;(2)

【解析】

试题分析:(1)函数在某个区间内可导,则若,则在这个区间内单调递增,若,则在这个区间内单调递减;(2)对于恒成立的问题,常用到两个结论:(1),(2);(3)利用导数方法证明不等式在区间上恒成立的基本方法是构造函数,然后根据函数的单调性,或者函数的最值证明函数,其中一个重要的技巧就是找到函数在什么地方可以等于零,这往往就是解决问题的一个突破口,观察式子的特点,找到特点证明不等式

试题解析:(1)若

为减函数,为增函数 4

(2)恒成立

(1)若

为增函数

,

不成立;

不成立6分

(2)恒成立,

不妨设

8分

,则

为增函数,(不合题意);

为增函数,(不合题意);

为减函数,(符合题意)11分

综上所述若时,恒成立,则 12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约(
A.164石
B.178石
C.189石
D.196石

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14)

如图在正三棱柱分别是的中点.

求证: ∥平面

求证:A1B⊥平面B1CE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆过点A(0,﹣6)和B(1,﹣5),且圆心在直线l:x﹣y+1=0上.
(1)求圆心为C的圆的标准方程;
(2)过点M(2,8)作圆的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为(1,2)的圆C与直线l:3x﹣4y﹣5=0相切.
(1)求圆C的方程;
(2)求过点P(3,5)与圆C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上的减函数,满足f(x)+f(y)=f(xy).
(1)求证:
(2)若f(4)=﹣4,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:2x+y﹣1=0与圆C:x2+y2=1相交于A,B两点.
(1)求△AOB的面积(O为坐标原点);
(2)设直线ax+by=1与圆C:x2+y2=1相交于M,N两点(其中a,b是实数),若OM⊥ON,试求点P(a,b)与点Q(0,1)距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA,则cosA+sinC的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以M(﹣1,0)为圆心的圆与直线 相切.
(1)求圆M的方程;
(2)过点(0,3)的直线l被圆M截得的弦长为 ,求直线l的方程.
(3)已知A(﹣2,0),B(2,0),圆M内的动点P满足|PA||PB|=|PO|2 , 求 的取值范围.

查看答案和解析>>

同步练习册答案