精英家教网 > 高中数学 > 题目详情

已知,若恒成立,则实数的取值范围是

A.              B.

C.                D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
2
x
+6
,其中a为实常数.
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范围;
(2)已知a=
3
4
,P1,P2是函数f(x)图象上两点,若在点P1,P2处的两条切线相互平行,求这两条切线间距离的最大值;
(3)设定义在区间D上的函数y=s(x)在点P(x0,y0)处的切线方程为l:y=t(x),当x≠x0时,若
s(x)-t(x)
x-x0
>0
在D上恒成立,则称点P为函数y=s(x)的“好点”.试问函数g(x)=x2f(x)是否存在“好点”.若存在,请求出所有“好点”坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在x∈(0,
e
)
递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为-
1
4

④函数h(x)和m(x)存在唯一的隔离直线y=2
e
x-e

其中真命题的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,若对于任意给定的不等实x1、x2,不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,则不等式f(1-x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下四个命题:
(1)函数f(x)=x2ex既无最小值也无最大值;
(2)在区间[-3,3]上随机取一个数x,使得|x-1|+|x+2|≤5成立的概率为
5
6

(3)若不等式(m+n)(
a
m
+
1
n
)≥25对任意正实数m,n恒成立,则正实数a的最小值为16;
(4)已知函数f(x)=
5
x+1
-3,(x≥0)
x2+4x+2,(x<0)
,若方程f(x)=k(x+2)-2恰有三个不同的实根,则实数k的取值范围是k∈(0,2);
以上正确的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式,若对任意该不等式恒成立,则实

的取值范围是     ▲    

查看答案和解析>>

同步练习册答案