精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
a2-1
=1(a>1)的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M(x1,y1)、N(x2,y2),点M在x轴上方,直线F1M与抛物线C相切.
(1)求抛物线C的方程和点M、N的坐标;
(2)设A,B是抛物线C上两动点,如果直线MA,MB与y轴分别交于点P,Q.△MPQ是以MP,MQ为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.
(1)由椭圆方程得半焦距c=
a2-(a2-1)
=1.
∴椭圆焦点为F1(-1,0),F2(1,0).
又抛物线C的焦点为(
p
2
,0)
,∴
p
2
=1
,解得p=2.∴抛物线C的方程:y2=4x.
∵点M(x1,y1)在抛物线C上,
y21
=4x1
,直线F1M的方程为y=
y1
x1+1
(x+1)

代入抛物线C得
y21
(x+1)2=4x(x1+1)2
,即4x1(x+1)2=4x(x1+1)2
x1x2-(
x21
+1)x+x1=0
         
∵F1M与抛物线C相切,∴△=(
x21
+1)2-4
x21
=0,∴x1=1.
∴M、N的坐标分别为(1,2)、(1,-2).    
(2)直线AB的斜率为定值-1.
证明如下:设A(
y21
4
y1)
,B(
y22
4
y2)

kMA=
y1-2
y21
4
-1
=
4
y1+2
,同理kMB=
4
y2+2

∵△MPQ是以MP,MQ为腰的等腰三角形,∴kMA=-kMB
4
y1+2
+
4
y2+2
=0

化为y1+y2+4=0得y1+y2=-4.
∴kAB=
y2-y1
y22
4
-
y21
4
=
4
y1+y2
=
4
-4
=-1.
所以直线AB的斜率为定值-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案