【题目】在直角坐标系中,直线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)已知点,直线与轴正半轴交于点,与曲线交于,两点,且,,成等比数列,求直线的极坐标方程.
科目:高中数学 来源: 题型:
【题目】已知椭圆E:,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.
若,点K在椭圆E上,、分别为椭圆的两个焦点,求的范围;
证明:直线OM的斜率与l的斜率的乘积为定值;
若l过点,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( )
①与点距离为的点形成一条曲线,则该曲线的长度是;
②若面,则与面所成角的正切值取值范围是;
③若,则在该四棱柱六个面上的正投影长度之和的最大值为.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线过点,该抛物线的准线与椭圆:相切,且椭圆的离心率为,点为椭圆的右焦点.
(1)求椭圆的标准方程;
(2)过点的直线与椭圆交于两点,为平面上一定点,且满足,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.
方案一:每满100元减20元;
方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)
红球个数 | 3 | 2 | 1 | 0 |
实际付款 | 7折 | 8折 | 9折 | 原价 |
(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;
(2)若某顾客购物金额为180元,选择哪种方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值,若某住户某月用电量不超过度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过度,则超出部分按议价(单位:元/度)计费,未超出部分按平价计费.为确定的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).
(1)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值;
(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达度的住户用电量保持不变;月用电量超过度的住户节省“超出部分”的60%,试估计全市每月节约的电量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海面上漂浮着、、、、、、七个岛屿,岛与岛之间都没有桥连接,小昊住在岛,小皓住在岛.现政府计划在这七个岛之间建造座桥(每两个岛之间至多建造一座桥).若,则桥建完后,小吴和小皓可以往来的概率为______;若,则桥建完后,小昊和小皓可以往来的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com