精英家教网 > 高中数学 > 题目详情
20.已知等差数列{an},Sn表示前n项和,若a3+a9>0,S9<0,则S1,S2…Sn中最小的是S5

分析 由题意和等差数列的性质以及求和公式可得等差数列{an}递减增且前5项为负数,从第6项开始为正数,可得结论.

解答 解:由题意和等差数列的性质可得2a6=a3+a9>0,∴a6>0,
又S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=$\frac{9×2{a}_{5}}{2}$=9a5<0,
∴等差数列{an}递减增且前5项为负数,从第6项开始为正数,
∴S1,S2…Sn中最小的是:S5
故答案为:S5

点评 本题考查等差数列的性质和求和公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设向量$\overrightarrow{a}$=(1+cosα,sinα),$\overrightarrow{b}$=(1-cosβ,sinβ),$\overrightarrow{c}$=(1,0),其中α∈(0,π),β(π,2π).
(1)求证:|$\overrightarrow{a}$|=2cos$\frac{α}{2}$,|$\overrightarrow{b}$|=2sin$\frac{β}{2}$;
(2)若$\overrightarrow{a}$与$\overrightarrow{c}$的夹角是θ1,$\overrightarrow{b}$与$\overrightarrow{c}$的夹角是θ2,且θ12=$\frac{π}{6}$,求sin$\frac{α-β}{4}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(I)证明:BD⊥平面PAC;
(Ⅱ)若PA=1,AD=2,求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若点P是抛物线x2=4y上一动点,则点P到直线x-2y-3=0和x轴的距离之和的最小值是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.2D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=sinx+cosx(x∈R)的图象向右平移了m个单位后,得到函数y=f′(x)的图象,其中m∈(0,2π),则m的值是$\frac{3π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要得到函数y=cos(π-2x)的图象,只需要将函数$y=cos(2x-\frac{π}{3})$的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\vec a=(x-5,3),\vec b=(2,x),且\vec a⊥\vec b$,则x=(  )
A.2或3B.-1或6C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(Ⅰ)在答题卡上作出这些数据的频率分布直方图:
(Ⅱ)估计这种产品质量指标值的众数、中位数及平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列各图是正方体和正三棱柱(两底面为正三角形的直棱柱),G、N、M、H分别是顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有③.

查看答案和解析>>

同步练习册答案