精英家教网 > 高中数学 > 题目详情
(2012•德阳三模)已知函数f(x)=2sinωx(cosωx-
3
sinωx)+
3
(ω>0)
的最小正周期为π.
(1)求f(x)的单调减区间;
(2)若f(θ)=
2
3
,求sin(
6
-4θ)
的值.
分析:(1)根据三角函数的恒等变换化简f(x)的解析式为2sin(2ωx+
π
3
),由最小正周期求出ω=1,可得 f(x)=2sin(2x+
π
3
).令 2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈z,求出x的范围即可求得 f(x)的单调减区间.
(2)由f(θ)=
2
3
,求得 sin(2θ+
π
3
)=
1
3
,再由 sin(
6
-4θ)
=cos[
2
-(
6
-4θ)
]=-cos(4θ+
3
)=2sin2(2θ+
π
3
)
-1,运算求得结果.
解答:解:(1)∵函数f(x)=2sinωx(cosωx-
3
sinωx)+
3
(ω>0)
=sin2ωx+
3
cos2ωx=2sin(2ωx+
π
3
),
由f(x)的最小正周期等于π 可得
=1,故ω=1,
∴f(x)=2sin(2x+
π
3
).
令 2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈z,可得  kπ+
π
12
≤x≤kπ+
12

∴f(x)的单调减区间为[kπ+
π
12
,kπ+
12
],k∈z.
(2)若f(θ)=
2
3
,则 2sin(2θ+
π
3
)=
2
3

∴sin(2θ+
π
3
)=
1
3

 故 sin(
6
-4θ)
=cos[
2
-(
6
-4θ)
]=-cos(4θ+
3
)=2sin2(2θ+
π
3
)
-1=2×
1
9
-1=-
7
9
点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性及其求法,符合三角函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•德阳三模)将正方形ABCD沿对角线AC折起,当三棱锥B-ACD体积最大时,直线AD与BC所成角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)半径为1的球面上有A、B、C三点,其中点A与B,C两点间的球面距离均为
π
2
,B、C两点间的对面距离为
π
3
,则球心到平面ABC的距离为
21
7
21
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)若x∈R,则“x2-2x+1≤0”是“x>0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

同步练习册答案