精英家教网 > 高中数学 > 题目详情
i是虚数单位,满足
z+i
z
=i的复数z=(  )
A、
1
2
+
1
2
i
B、
1
2
-
1
2
i
C、-
1
2
+
1
2
i
D、-
1
2
-
1
2
i
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用复数的运算法则即可得出.
解答: 解:∵满足
z+i
z
=i,∴z=
i
i-1
=
i(-i-1)
(i-1)(-i-1)
=
1
2
-
1
2
i

故选:B.
点评:本题考查了复数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论正确的是(  )
A、若p∨q为真命题,则p∧q为真命题
B、一个命题的逆命题为真,它的否命题也一定为真
C、命题“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
D、命题“若x<-1,则x2-2x-3>0”的否命题“若x<-1,则x2-2x-3≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:cos(
π
4
+α)+sin(
π
4
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|
x≥1
2x-y≤1
},集合B={(x,y)|3x+2y-m=0},若A∩B≠∅,则实数m的最小值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,若
a+bi
i
=2+i(a、b∈R),则ab=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+1=3an,n∈N*,且前3项之和等于13,则该数列的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)当x<
3
2
时,求函数y=x+
8
2x-3
的最大值;
(2)当0<x<
1
2
时,求函数y=
1
2
x(1-2x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=(2x2-2x+1+5,x∈[-1,2]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
16
+
y2
8
=1
的长轴端点A、B与y轴平行的直线交椭圆于P、Q,PA、QB延长线相交于S,求S轨迹.

查看答案和解析>>

同步练习册答案