精英家教网 > 高中数学 > 题目详情
18.设点F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点(O为坐标原点),以O为圆心,|F1F2|为直径的圆交双曲线于点M(第一象限).若过点M作x轴的垂线,垂足恰为线段OF2的中点,则双曲线的离心率是(  )
A.$\sqrt{3}$-1B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

分析 由题意M的坐标为M( $\frac{c}{2}$,$\frac{\sqrt{3}c}{2}$),代入双曲线方程可得e的方程,即可求出双曲线的离心率.

解答 解:由题意点F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点(O为坐标原点),以O为圆心,|F1F2|为直径的圆交双曲线于点M(第一象限).若过点M作x轴的垂线,垂足恰为线段OF2的中点,
△OMF2是正三角形,M的坐标为M( $\frac{c}{2}$,$\frac{\sqrt{3}c}{2}$),代入双曲线方程可得$\frac{{c}^{2}}{4{a}^{2}}$-$\frac{3{c}^{2}}{4{b}^{2}}$=1
∴e4-8e2+4=0,
∴e2=4+2$\sqrt{3}$
∴e=$\sqrt{3}$+1.
故选:C.

点评 本题考查双曲线与圆的性质,考查学生的转化思想以及计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.袋中有3个大小、质量相同的小球,每个小球上分别写有数字0,1,2,随机摸出一个将其上的数字记为a1,然后放回袋中,再次随机摸出一个,将其上的数字记为a2,依次下去,第n次随机摸出一个,将其上的数字记为an记ξn=a1a2…an,则(1)随机变量ξ2的期望是1;
(2)当${ξ_n}={2^{n-1}}$时的概率是$\frac{n}{{3}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“?x∈R,2x>0”的否定是(  )
A.?x0∈R,2${\;}^{{x}_{0}}$>0B.?x0∈R,2${\;}^{{x}_{0}}$≤0C.?x∈R,2x<0D.?x∈R,2x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n展开式中第二、三、四项的二项式系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)此展开式中是否有常数项?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线y=$\sqrt{3}$x+1的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l1:x+y-2=0,直线l2过点A(-2,0)且与直线l1平行.
(1)求直线l2的方程;
(2)点B在直线l1上,若|AB|=4,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=sin(x-$\frac{π}{6}$)图象上所有的点(  ),可以得到函数y=sin(x+$\frac{π}{6}$)的图象.
A.向左平移$\frac{π}{3}$单位B.向右平移$\frac{π}{3}$单位C.向左平移$\frac{π}{6}$单位D.向右平移$\frac{π}{6}$单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若复数z满足$\frac{i}{z-1}=\frac{1}{2}$(i为虚数单位),则z=1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanα=3,则cos2α=$\frac{1}{10}$.

查看答案和解析>>

同步练习册答案