精英家教网 > 高中数学 > 题目详情

【题目】已知曲线Cx2﹣y2=1及直线l:y=kx﹣1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为 ,求实数k的值.

【答案】
(1)解:由 消去y,得(1﹣k2)x2+2kx﹣2=0.

∵l与C左支交于两个不同的交点

且 x1+x2=﹣ <0,x1x2=﹣ >0

∴k的取值范围为 (﹣ ,﹣1)


(2)解:设A(x1,y1)、B(x2,y2),

由(1)得 x1+x2=﹣ ,x1x2=﹣

又l过点D(0,﹣1),

∴SOAB= |x1﹣x2|=

∴(x1﹣x22=(2 2,即(﹣ 2+ =8.

∴k=0或k=±


【解析】(1)将直线与双曲线联立,利用l与C左支交于两个不同的交点,结合韦达定理,建立不等式,从而可求实数k的取值范围;(2)利用韦达定理,结合△AOB的面积为 ,可建立k的方程,从而可求实数k的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(m1,2)B(1,1)C(3m2m1)

(1)ABC三点共线,求实数m的值;

(2)ABBC,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过双曲线C: =1(a>0,b>0)的中心的直线交双曲线于点A,B,在双曲线C上任取与点A,B不重合的点P,记直线PA,PB,AB的斜率分别为k1 , k2 , k,若k1k2>k恒成立,则离心率e的取值范围为(
A.1<e<
B.1<e≤
C.e>
D.e≥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC

(1)证明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方体ABCD﹣A1B1C1D1中,E,M,N分别是BC,AE,CD1的中点,AD=AA1=a,AB=2a.求证:MN∥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数在区间上的最大值;

(2)若是函数图像上不同的三点,且,试判断之间的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的图像在处的切线与轴平行,求的极值;

(2)若函数内单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2y24ax2ay20a200.

(1)求证:对任意实数a,该圆恒过一定点;

(2)若该圆与圆x2y24相切,求a的值.

查看答案和解析>>

同步练习册答案