精英家教网 > 高中数学 > 题目详情
(2013•天津一模)已知等差数列{an}中a1=1,公差d>0,前n项和为Sn,且S1,S3-S2,S5-S3成等比数列.
(I)求数列{an}的通项公式an及Sn
(Ⅱ)设bn=
1Sn
(n∈N•)
,证明:b1+b2+…+bn<2.
分析:(I)利用等差数列的通项公式即可得到S1=a1=1,S3-S2=a3=1+2d,S5-S3=a4+a5=2+7d,再利用等比数列的定义及S1,S3-S2,S5-S3成等比数列,可得(1+2d)2=1×(2+7d),解出d,再利用等差数列的通项公式及其前n项和公式即可得出;
(II)利用(I)的结论和裂项求和即可证明.
解答:(Ⅰ)解:由题意S1=a1=1,S3-S2=a3=1+2d,S5-S3=a4+a5=2+7d,
∵S1,S3-S2,S5-S3成等比数列,
∴(1+2d)2=1×(2+7d),
解得d=-
1
4
(舍去)或d=1
∴an=n,
Sn=
n(n+1)
2

(Ⅱ)证明:由(Ⅰ)得bn=
1
Sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

∴b1+b2+…+bn=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=2(1-
1
n+1
)
<2
即b1+b2+…+bn<2.
点评:熟练掌握等差数列、等比数列的通项公式及其前n项和公式、裂项求和是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津一模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(I)求椭圆E的方程;
(Ⅱ)点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由:
(Ⅲ)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)抛物线y2=2px(p>0)上一点M(1,m) (m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于
1
9
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)已知数列{an}中a1=2,an+1=2-
1
an
,数列{bn}中bn=
1
an-1
,其中 n∈N*
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)设Sn是数列{
1
3
bn
}的前n项和,求
1
S1
+
1
S2
+…+
1
Sn

(Ⅲ)设Tn是数列{ (
1
3
)nbn }
的前n项和,求证:Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)i是虚数单位,复数
3+i
1+i
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)设x∈R,则“x>0“是“x+
1
x
≥2
“的(  )

查看答案和解析>>

同步练习册答案