精英家教网 > 高中数学 > 题目详情
14.观察下表:

问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2015是第几行的第几个数?

分析 (1)通过观察特殊行得出规律,可判断此表第n行数的规律.
(2)运用等差数列的求和公式求解.
(3)先运用公式判断是第几行的数,再判断是第几个数.

解答 解:(1)通过观察前几行得出规律可判断:第n+1行的第一个数是2n
∴第n行的最后一个数是2n-1.
(2)2n-1+(2n-1+1)+(2n-1+2)+…+(2n-1)
=$\frac{{2}^{n-1}+{2}^{n}-1}{2}$,所求此表第n行的各个数之和是$\frac{{2}^{n-1}+{2}^{n}-1}{2}$.
(3)∵210=1 024,211=2 048,1 024<2 010<2 048,
∴2 010在第11行,该行第1个数是210=1 024.
由2 015-1 024+1=992,知2 015是第11行的第992个数.

点评 本题考查了等差数列的概念,公式性质在数阵中的应用,加强了数列的运用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设f(x)=$\frac{1}{{{3^x}+\sqrt{3}}}$,求:f(0)+f(1);f(-1)+f(2);f(-2)+f(3),由此可以猜想出的一般性结论是若${x_1}+{x_2}=1,则f({x_1})+f({x_2})=\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的坐标方程为ρ=2cosθ,直线l经过点M(5,$\sqrt{3}$),且倾斜角为$\frac{π}{6}$.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)设直线l与曲线C交于A,B两点,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k)若α∥β,则k等于(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在极坐标系中,圆C1:ρ=2cosθ与圆C2:ρ=2sinθ相交于 A,B两点,则|AB|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱台DEF-ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.
(1)求证:平面ABED∥平面GHF;
(2))若BC=CF=$\frac{1}{2}$AB=1,求二面角A-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某冷饮店为了解气温对其营业额的影响,随机记录了该店1月份销售淡季中的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如表所示:
x367910
y1210887
(Ⅰ)判定y与x的是正相关还是负相关;并求回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)若该地1月份某天的最低气温为0℃,预测该店当日的营业额
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若指数函数f(x)的图象过点(2,$\frac{1}{4}$),则f(-2)=4.

查看答案和解析>>

同步练习册答案