精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图像过点

1)求函数的解析式;

2)若上有解,求的最小值;

3)记,是否存在正数,使得对一切均成立?若存在,求出的最大值;若不存在,说明理由.

【答案】1;(2;(3,理由见解析

【解析】

1)直接把点的坐标代入函数方程求出的值,即可求函数的解析式;(2)原方程等同于上有解,结合单调性求出右端最小值即可;(3)先根据条件求出数列的通项公式,将题意转化为恒成立;再通过构造,利用其单调性求出的最小值即可求出的最大值.

1)由已知得,解得

.

2)由(1)得上有解,

上有解,

,易得上单调递增,

,即的最小值为2.

(3)因为

假设存在正数,使得对一切均成立,

恒成立.

,所以是递增数列.

所以最小,最小值

所以,即的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1),边长为的正方形中,分别为上的点,且,现沿剪切、拼接成如图(2)的图形,再将沿折起,使三点重合于点,如图(3.

1)求证:

2)求二面角最小时的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为,墙的长度为米,(已有两面墙的可利用长度足够大),记.

(1)若,求的周长(结果精确到0.01米);

(2)为了使小动物能健康成长,要求所建的三角形露天活动室面积,的面积尽可能大,当为何值时,该活动室面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面为等边三角形,分别为棱的中点.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值;

3)在棱上是否存在点,使得平面?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位已知直线l的参数方程为(为参数,),抛物线C的普通方程为.

(1)求抛物线C的准线的极坐标方程;

(2)设直线l与抛物线C相交于AB两点,求的最小值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( )

A.1150B.1380C.1610D.1860

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面,的中点,.

1)求证:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方形中,边长的中点为,现将沿对角线翻折(如图),则在翻折的过程中.下列说法正确的是______.(填正确命题的序号)

①直线与直线所成的角为不重合时);

②三棱锥体积的最大值为

③三棱锥外接球的表面积为

④点运动形成的轨迹为椭圆的一部分.

查看答案和解析>>

同步练习册答案