精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)上为减函数,求的取值范围;

(2)若关于的方程内有唯一解,求的取值范围.

【答案】(1) ;(2)

【解析】

(1)根据复合函数的单调性和对数函数的定义域及二次函数的单调性即可求出a的取值范围,

(2)根据对数的运算性质,关于x的方程f(x)=﹣1+log(x+3)在上仅有一解,转化为上仅有一个交点,即可求出a的取值范围.

(1)令t=x2﹣2(2a﹣1)x+8>0,

∵y=logt[a,+∞)上为减函数,

t=x2﹣2(2a﹣1)x+8[a,+∞)上为增函数,

∵其对称轴为x=2a﹣1,

∴t[2a﹣1,+∞)为增函数,

a≥2a﹣1,且t(a)>0,即a2﹣2(2a﹣1)a+8>0,

解得a≤1或﹣<a<2,

a的取值范围为(﹣,1];

(2)∵方程f(x)=﹣1+ log(x+3)=log(2x+6),

∴x2﹣2(2a﹣1)x+8=2x+6,∴x2﹣4ax+2=0,

上仅有一个交点.

g(x)=g(x)(1,上递减,在(,3)上递增.

所以g()=,g(1)=3,g(3)=

可得

a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在120°的二面角α--β的两个面内分别有点A,B,A∈α,B∈β,A,B到棱l的距离AC,BD分别是2,4,且线段AB=10.

(1)求C,D间的距离;

(2)求直线AB与平面β所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P为椭圆C: =1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈( ],则椭圆C的离心率的取值范围为( )
A.(0, ]
B.(0, ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mlnx﹣x2+2(m∈R).
(1)当m=1时,求f(x)的单调区间;
(2)若f(x)在x=1时取得极大值,求证:f(x)﹣f′(x)≤4x﹣3;
(3)若m≤8,当x≥1时,恒有f(x)﹣f′(x)≤4x﹣3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱锥P﹣ABC中,PA⊥面ABC,ACBC,且PA=AC=BC=1,点EPC的中点,作EFPBPB于点F.

(Ⅰ)求证:PB⊥平面AEF;

(Ⅱ)求二面角A﹣PB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左右焦点分别为F1F2,离心率为,过点F1且垂直于x轴的直线被椭圆截得的弦长为,直线ly=kx+m与椭圆交于不同的AB两点.

(Ⅰ)求椭圆C的方程;

)若在椭圆C上存在点Q满足: O为坐标原点).求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2 交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

同步练习册答案