精英家教网 > 高中数学 > 题目详情
6.已知等比数列{an}的公比为正数,且a1•a7=2a32,a2=2,则a1的值是$\sqrt{2}$.

分析 由已知列式求得q,再由${a}_{1}=\frac{{a}_{2}}{q}$求得答案.

解答 解:在等比数列{an}中,由a1•a7=2a32,得${{a}_{4}}^{2}=2{{a}_{3}}^{2}$,
得q2=2,∵q>0,∴$q=\sqrt{2}$.
又a2=2,
∴${a}_{1}=\frac{{a}_{2}}{q}=\frac{2}{\sqrt{2}}=\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查等比数列的通项公式,考查了等比数列的性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知椭圆$C:\frac{x^2}{4}+{y^2}=1$,斜率为$\frac{{\sqrt{3}}}{2}$的动直线l与椭圆C交于不同的两点A,B.
(1)设M为弦AB的中点,求动点M的轨迹方程;
(2)设F1,F2为椭圆C在左、右焦点,P是椭圆在第一象限上一点,满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-\frac{5}{4}$,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为[-1,5],在同一坐标系下,函数y=f(x)的图象与直线x=1的交点个数为(  )
A.0个B.1个C.2个D.0个或者2个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a∈R,当x>0时,f(x)=log2($\frac{1}{x}$+a).
(1)若函数f(x)过点(1,1),求此时函数f(x)的解析式;
(2)若函数g(x)=f(x)+2log2x只有一个零点,求实数a的范围;
(3)设a>0,若对任意实数t∈[$\frac{1}{3}$,1],函数f(x)在[t,t+1]上的最大值与最小值的差不大于1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a、b、c分别为角A、B、C所对的边,且a=2,b=$\sqrt{6}$,B=$\frac{π}{3}$,则角A等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知,在△ABC中,a、b、c分别为角A、B、C的对边,且asinB=$\sqrt{3}$bcosA.
(1)求角A的大小;
(2)设△ABC的面积为$\sqrt{3}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线C:y2=2x的焦点为F,A(x0,y0)是C上一点,|AF|=$\frac{3}{2}$x0,则x0=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,a4+a6=6,且a2=1,则公差d等于(  )
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{6}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设$\overrightarrow{a}$=(3,-2,-1)是直线l的方向向量,$\overrightarrow{n}$=(1,2,-1)是平面α的法向量,则(  )
A.l⊥αB.l∥αC.l?α或l⊥αD.l∥α或l?α

查看答案和解析>>

同步练习册答案