精英家教网 > 高中数学 > 题目详情
21、已知命题p:不等式|x|+|x+1|>m的解集为R,命题q:函数f(x)=x2-2mx+1在(2,+∞)上是增函数.若p∨q为真命题,p∧q为假命题,则实数m的取值范围是
{m|1≤m≤2}
分析:先求出使命题p,q成立的条件,若p∨q为真命题,p∧q为假命题可知p,q一真一假,分两种情况分别求解,最后将结果合并.
解答:解:若p为真命题,则m<1,若p为假命题,则m≥1
   若q为真命题,则m≤2,若q为假命题,则m>2
   若p∨q为真命题,p∧q为假命题可知p,q一真一假
(1)当p为真命题,若q为假命题,须m<1且m>2,此时m不存在.
(2)p为假命题,q为真命题,须m≥1且m≤2,即1≤m≤2
综上所述,实数m的取值范围是1≤m≤2
故答案为:{m|1≤m≤2}.
点评:本题考查复合命题成立的条件,这类题目要转化到两个简单命题的真假性条件.要有逻辑思维能力,分类讨论的意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=(5-2m)x是(-∞,+∞)上的增函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:不等式ex>m的解集为R,命题q:f(x)=
2-m
x
在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x|+|x-1|>a的解集为R,命题q:f(x)=-(5-2a)x是减函数,若p,q中有且仅有一个为真命题,则实数a的取值范围是
[1,2)
[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式-2x+m>1,x∈[-1,0]恒成立;命题q:函数y=log2[4x2+4(m-2)x+1]的定义域为(-∞,+∞),若“p∨q”为真,“p∧q”为假,求m的取值范围.

查看答案和解析>>

同步练习册答案