±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Ç·Ö£¬×÷´ðʱ£¬ÏÈÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÌîÈëÀ¨ºÅÖУ®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¶þ½×¾ØÕóÓÐÌØÕ÷Öµ¦Ë=-1¼°¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿£®
£¨¢ñ£©Çó¾àÕóM£»
£¨¢ò£©ÉèÇúÏßCÔÚ¾ØÕóMµÄ×÷ÓÃϵõ½µÄ·½³ÌΪx2+2y2=1£¬ÇóÇúÏßCµÄ·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪΪ²ÎÊý£©£¬ÇúÏßPÔÚÒÔ¸ÃÖ±½Ç×ø±êϵµÄÔ­µãOµÄΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵϵķ½³ÌΪp2-4pcos¦È+3=0£®
£¨¢ñ£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÇúÏßPµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÇúÏßCºÍÇúÏßPµÄ½»µãΪA¡¢B£¬Çó|AB|£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªº¯Êýf£¨x£©=|x+1|+|x-2|£¬²»µÈʽt¡Üf£¨x£©ÔÚx¡ÊRÉϺã³ÉÁ¢£®
£¨¢ñ£©ÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©¼ÇtµÄ×î´óֵΪT£¬ÈôÕýʵÊýa¡¢b¡¢cÂú×ãa2+b2+c2=T£¬Çóa+2b+cµÄ×î´óÖµ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©£º£¨I£©¸ù¾Ý¾ØÕóµÄÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿µÄ¶¨Ò彨Á¢µÈʽ¹Øϵ£¬½âÖ®¼´¿ÉÇó³öaºÍdµÄÖµ£¬´Ó¶øÇó³ö¾ØÕóM£»
£¨II£©ÉèµãA£¨x£¬y£©ÎªÇúÏßCÉϵÄÈÎÒ»µã£¬ËüÔÚ¾ØÕóMµÄ×÷ÓÃϵõ½µÄµãΪA'£¨x'£¬y'£©£¬È»ºó½¨Á¢µÈʽ¹Øϵ£¬½«A'£¨x'£¬y'£©´úÈë·½³ÌΪx2+2y2=1½øÐÐÇó½â¼´¿É£®

£¨2£©£¨¢ñ£©ÇúÏßCµÄ²ÎÊý·½³ÌΪΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¼´µÃÆÕͨ·½³Ì£¬ÔÙ¸ù¾Ý¼«×ø±êºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¹«Ê½ÇóµÃÇúÏßCÔÚ¼«×ø±êϵÖеķ½³Ì£®
£¨¢ò£©ÓÉ£¨I£©°ÑÖ±ÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬°ÑÇúÏßPµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬ÔÙ¸ù¾ÝÔ²µÄ°ë¾¶£¬Çó³öÏÒ³¤£®

£¨3£©£¨I£©Ê×ÏÈÒÑÖª²»µÈʽt¡Üf£¨x£©ÔÚx¡ÊRÉϺã³ÉÁ¢£¬Ôò¿ÉÒÔÇó³öf£¨x£©µÄ×îСֵ£¬Ê¹µÃt¡Üf£¨x£©min¼´¿É£®
£¨II£©ÓÉ£¨¢ñ£©Öª£¬T=3£¬¼´a2+b2+c2=3£®ÓÉ¿ÂÎ÷²»µÈʽ֪£º£¨a+2b+c£©2¡Ü£¨a2+b2+c2£©£¨12+22+12£©£¬¼´¿ÉÇó³öa+2b+cµÄ×î´óÖµ£®
½â´ð£º½â£º£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
£¨¢ñ£©ÒÀÌâÒâµÃ£º£¬¼´£¬¡­£¨2·Ö£©
½âµÃ£¬ËùÒÔ£®¡­£¨3·Ö£©
£¨¢ò£©ÉèÇúÏßCÉÏÒ»µãP£¨x£¬y£©ÔÚ¾ØÕóMµÄ×÷ÓÃϵõ½ÇúÏßx2+2y2=1ÉÏÒ»µãP'£¨x'£¬y'£©£¬
Ôò£¬¼´£¬¡­£¨5·Ö£©
ÓÖÒòΪ£¨x'£©2+2£¨y'£©2=1£¬ËùÒÔ£¨2x+y£©2+2£¨3x£©2=1£¬
ÕûÀíµÃÇúÏßCµÄ·½³ÌΪ22x2+4xy+y2=1£®¡­£¨7·Ö£©

£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
£¨¢ñ£©ÇúÏßCµÄÆÕͨ·½³ÌΪx-y-1=0£¬ÇúÏßPµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-4x+3=0£®¡­£¨3·Ö£©
£¨¢ò£©ÇúÏßP¿É»¯Îª£¨x-2£©2+y2=1£¬±íʾԲÐÄÔÚ£¨2£¬0£©£¬°ë¾¶r=1µÄÔ²£¬
ÔòÔ²Ðĵ½Ö±ÏßCµÄ¾àÀëΪ£¬ËùÒÔ£®¡­£¨7·Ö£©

£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
£¨¢ñ£©²»µÈʽt¡Üf£¨x£©ÔÚx¡ÊRÉϺã³ÉÁ¢£¬Ôòt¡Üf£¨x£©min£¬
ÓÖÒòΪf£¨x£©=|x+1|+|x-2|¡Ý|£¨x+1£©-£¨x-2£©|=3£¬ËùÒÔº¯Êýf£¨x£©µÄ×îСֵΪ3£¬
ËùÒÔtµÄÈ¡Öµ·¶Î§Îª£¨-¡Þ£¬3]£®¡­£¨3·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©Öª£¬T=3£¬¼´a2+b2+c2=3£®
ÓÉ¿ÂÎ÷²»µÈʽ֪£º£¨a+2b+c£©2¡Ü£¨a2+b2+c2£©£¨12+22+12£©£¬Ôò£¨a+2b+c£©2¡Ü18£®
ËùÒÔa+2b+cµÄ×î´óֵΪ£¬¡­£¨6·Ö£©
µ±ÇÒ½öµ±£¬£¬Ê±µÈºÅ³ÉÁ¢£®¡­£¨7·Ö£©
µãÆÀ£º£¨1£©±¾Ð¡ÌâÖ÷Òª¿¼²é¾ØÕóÓë±ä»»¡¢ÇúÏßÔÚ¾ØÕó±ä»»ÏµÄÇúÏߵķ½³Ì£¬¿¼²éÔËËãÇó½âÄÜÁ¦¼°»¯¹éÓëת»¯Ë¼Ï룮
£¨2£©±¾Ð¡ÌâÖ÷Òª¿¼²éÇúÏߵIJÎÊý·½³ÌÓ뼫×ø±ê·½³Ì¡¢Ö±Ïߵļ«×ø±ê·½³ÌµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦ÒÔ¼°»¯¹éÓëת»¯Ë¼Ïë¡¢·ÖÀàÓëÕûºÏ˼Ï룬ÊôÓÚ»ù´¡Ì⣮
£¨3£©´ËСÌâÖ÷Òª¿¼²éºã³ÉÁ¢µÄÎÊÌâ¡¢¿ÂÎ÷²»µÈʽ£¬ÊôÓÚ»ù´¡ÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªa£¬b¡ÊR£¬ÈôM=
-1a
b3
Ëù¶ÔÓ¦µÄ±ä»»TM°ÑÖ±ÏßL£º2x-y=3±ä»»Îª×ÔÉí£¬ÇóʵÊýa£¬b£¬²¢ÇóMµÄÄæ¾ØÕó£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³Ì£º
x=t
y=1+2t
£¨tΪ²ÎÊý£©ºÍÔ²CµÄ¼«×ø±ê·½³Ì£º¦Ñ=2
2
sin(¦È+
¦Ð
4
)
£®
¢Ù½«Ö±ÏßlµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Ô²CµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
¢ÚÅжÏÖ±ÏßlºÍÔ²CµÄλÖùØϵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªº¯Êýf£¨x£©=|x-1|+|x-2|£®Èô²»µÈʽ|a+b|+|a-b|¡Ý|a|f£¨x£©£¨a¡Ù0£¬a£¬b¡ÊR£©ºã³ÉÁ¢£¬ÇóʵÊýxµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡ÔñÌ⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Ç·Ö£®
£¨1£©£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=
1a
-1b
£¬AµÄÒ»¸öÌØÕ÷Öµ¦Ë=2£¬Æä¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿ÊǦÁ1=
2
1
£®
£¨¢ñ£©Çó¾ØÕóA£»
£¨¢ò£©ÈôÏòÁ¿¦Â=
7
4
£¬¼ÆËãA2¦ÂµÄÖµ£®

£¨2£©£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÍÖÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=
12
3cos2¦È+4sin2¦È
£¬µãF1£¬F2ΪÆä×ó¡¢ÓÒ½¹µã£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=2+
2
2
t
y=
2
2
t
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÇóµãF1£¬F2µ½Ö±ÏßlµÄ¾àÀëÖ®ºÍ£®
£¨3£©£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªx£¬y£¬z¾ùΪÕýÊý£®ÇóÖ¤£º
x
yz
+
y
zx
+
z
xy
¡Ý
1
x
+
1
y
+
1
z
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬ÿСÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=
12
34
£®
¢ÙÇó¾ØÕóAµÄÄæ¾ØÕóB£»
¢ÚÈôÖ±Ïßl¾­¹ý¾ØÕóB±ä»»ºóµÄ·½³ÌΪy=x£¬ÇóÖ±ÏßlµÄ·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖª¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔ­µãÖغϣ¬¼«ÖáÓëÖ±½Ç×ø±êϵÖÐxÖáµÄÕý°ëÖáÖغϣ®Ô²CµÄ²ÎÊý·½³ÌΪ
x=1+2cos¦Á
y=-1+2sin¦Á
£¨aΪ²ÎÊý£©£¬µãQ¼«×ø±êΪ£¨2£¬
7
4
¦Ð£©£®
£¨¢ñ£©»¯Ô²CµÄ²ÎÊý·½³ÌΪ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãPÊÇÔ²CÉϵÄÈÎÒâÒ»µã£¬ÇóP¡¢QÁ½µã¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
£¨I£©¹ØÓÚxµÄ²»µÈʽ|x-3|+|x-4|£¼aµÄ½â²»ÊÇ¿Õ¼¯£¬ÇóaµÄÈ¡Öµ·¶Î§£®
£¨II£©Éèx£¬y£¬z¡ÊR£¬ÇÒ
x2
16
+
y2
5
+
z2
4
=1
£¬Çóx+y+zµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Ç·Ö£®
£¨¢ñ£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£¬
ÒÑÖª¾ØÕóA=
01
a0
£¬¾ØÕóB=
02
b0
£¬Ö±Ïßl1
£ºx-y+4=0¾­¾ØÕóAËù¶ÔÓ¦µÄ±ä»»µÃÖ±Ïßl2£¬Ö±Ïßl2ÓÖ¾­¾ØÕóBËù¶ÔÓ¦µÄ±ä»»µÃµ½Ö±Ïßl3£ºx+y+4=0£¬ÇóÖ±Ïßl2µÄ·½³Ì£®
£¨¢ò£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£¬
ÇóÖ±Ïß
x=-2+2t
y=-2t
±»ÇúÏß
x=1+4cos¦È
y=-1+4sin¦È
½ØµÃµÄÏÒ³¤£®
£¨¢ó£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£¬½â²»µÈʽ|x+1|+|2x-4|£¾6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö
£¨1£©ÒÑÖª¾ØÕóM=
12
21
£¬¦Â=
1
7
£¬£¨¢ñ£©ÇóM-1£»£¨¢ò£©Çó¾ØÕóMµÄÌØÕ÷ÖµºÍ¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿£»£¨¢ó£©¼ÆËãM100¦Â£®
£¨2£©ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=1+cos¦È£¬µãAµÄ¼«×ø±êÊÇ£¨2£¬0£©£¬ÇóÇúÏßCÔÚËüËùÔÚµÄƽÃæÄÚÈƵãAÐýתһÖܶøÐγɵÄͼÐεÄÖܳ¤£®
£¨3£©ÒÑÖªa£¾0£¬ÇóÖ¤£º
a2+
1
a2
-
2
¡Ýa+
1
a
-2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸