精英家教网 > 高中数学 > 题目详情
8.若α为第四象限角,则$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$=(  )
A.$-\frac{2}{sinα}$B.$-\frac{2}{tanα}$C.$\frac{2}{{co{s}α}}$D.$-\frac{2}{sinαcosα}$

分析 原式被开方数分子分母都等于分母,利用同角三角函数间的基本关系及二次根式性质化简,即可得到结果.

解答 解:∵若α为第四象限角,
∴sinα<0,
∴$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$=$\frac{\sqrt{1-cos^{2}α}}{1-co{s}α}$+$\frac{\sqrt{1-cos^{2}α{\;}}}{1+co{s}α}$
=$\frac{-sinα}{1-cosα}$+$\frac{-sinα}{1+cosα}$
=$\frac{-sinα-sinαcosα-sinα+sinαcosα}{si{n}^{2}α}$
=-$\frac{2}{sinα}$.
故选:A.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=3x,g(x)=|x+a|-3,其中a∈R.
(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;
(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$c:\frac{y^2}{a^2}-\frac{x^2}{b^2}(a>0,b>0)$的渐近线方程为$y=±\frac{3}{4}x$,且其焦点为(0,5),则双曲线C的方程(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线x+y+4=0被圆x2+y2+2x-2y+a=0所截得弦长为2,则实数a的值为(  )
A.-1B.-4C.-7D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆${C_1}:{x^2}+{y^2}+2x=0$,圆${C_2}:{x^2}+{y^2}-2x-2y-2=0$,C1,C2分别为两圆的圆心.
(Ⅰ)求圆C1和圆C2的公共弦长;
(Ⅱ)过点C1的直线l交圆C2与A,B,且$AB=\sqrt{14}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆$\frac{x^2}{4}+\frac{y^2}{b^2}=1(0<b<2)$,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为6,则b的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知△ABC和△EBC是边长为2的正三角形,平面EBC⊥平 面ABC,AD⊥平面ABC,且$AD=2\sqrt{3}$.
(Ι)证明:AD∥平面EBC;
(II)求三棱锥E-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上的偶函数,并满足f(x+2)=-$\frac{1}{f(x)}$,当1≤x<2时,$f(x)={log_{\frac{1}{2}}}({2-x})$,则f(6.5)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-2|-|x+2|.
(1)把函数写成分段函数的形式,并画出函数图象;
(2)根据图象写出函数的值域,并证明函数的奇偶性.

查看答案和解析>>

同步练习册答案