精英家教网 > 高中数学 > 题目详情
已知x,y满足不等式组
x-y-1≥0
x+y-1≤0
x+2y+1≥0
则z=20-2y+x的最大值是(  )
A、21B、23C、25D、27
分析:先根据约束条件画出可行域,设z=20-2y+x,再利用z的几何意义求最值,只需求出直线z=20-2y+x过可行域内的点A时,从而得到z值即可.
解答:精英家教网解:先根据约束条件画出可行域,
设z=20-2y+x,
将最大值转化为y轴上的截距,
当直线z=20-2y+x经过区域内的A(3,-2)时,z最大,
最大值为:27
故选D.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足不等式组
x+y≤4
ax+by-2a≤0
,且目标函数z=2x+y的最大值为7,则a+b=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y满足不等式
2x+y≤6
x+y≤5
x≥0,y≥0
,在这些点中,使目标函数z=6x+8y取得最大值的点的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知x,y满足不等式组
x+y≤4
ax+by-2a≤0
,且目标函数z=2x+y的最大值为7,则a+b=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)(文)已知x,y满足不等式组
x-y-1≥0
x+y-1≤0
x+2y+1≥0
则z=20-2y+x的最大值=
27
27

查看答案和解析>>

同步练习册答案