精英家教网 > 高中数学 > 题目详情
若m,n为实数,则使mn(m-n)>0成立的一个充要条件为(    )

A.0<                    B.0>

C.                         D.

解析:mn(m-n)>0>0

*->0

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

若A、B、C是平面内以O点为圆心,半径为1的圆上不同三个点,且OA⊥OB,又存在实数m,n,使
OC
=m
OA
+n
OB
,则实数m,n的x关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下命题:
①若数列{an}为等比数列,则数列{lgan}为等差数列;
②关于x的不等式ax2-ax+1>0的解集为x∈R,则实数a的取值范围为0≤a<4;
③在等差数列{an}中,若am+an=ap+at(m,n,p,t∈N*),则m+n=p+t;
④x,y满足
y≤x
x+y≤1
y≥-1
,则使z=2x+y取得最大值的最优解为(2,-1).
其中正确命题的序号为
②④
②④

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省深圳实验学校高二(上)第一阶段考试数学试卷(解析版) 题型:填空题

有如下命题:
①若数列{an}为等比数列,则数列{lgan}为等差数列;
②关于x的不等式ax2-ax+1>0的解集为x∈R,则实数a的取值范围为0≤a<4;
③在等差数列{an}中,若am+an=ap+at(m,n,p,t∈N*),则m+n=p+t;
④x,y满足,则使z=2x+y取得最大值的最优解为(2,-1).
其中正确命题的序号为   

查看答案和解析>>

同步练习册答案