精英家教网 > 高中数学 > 题目详情

(10分)一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积和体积.

   

解析试题分析:根据三视图中:“长对正,高平齐,宽相等。”不难得到这个三棱柱的底面三角形的高为,从而得到边长为6;三棱柱的高为2.这样由面积公式和体积公式易解.底面三角形边长的确定是本题的关键,也是本题的易错点.
试题解析:根据题意不难得到这个三棱柱的底面三角形的高为,从而得到边长为6;三棱柱的高为2. 由面积公式和体积公式可得:

考点:三视图、表面积、面积公式和体积公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在长方体中,, 沿平面把这个长方体截成两个几何体: 几何体(1);几何体(2)

(I)设几何体(1)、几何体(2)的体积分为是,求的比值
(II)在几何体(2)中,求二面角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形为矩形,平面上的点,且平面.

(1)求三棱锥的体积;
(2)设在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是正方形,平面分别为的中点,且.

(Ⅰ)求证:平面平面
(Ⅱ)求三棱锥与四棱锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥中,中点, 中点,且为正三角形。

(Ⅰ)求证://平面
(Ⅱ)求证:平面⊥平面
(III)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱,底面三角形为正三角形,侧棱底面的中点,中点.

(Ⅰ)求证:直线平面
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图.在直棱柱ABC-A1B1C1中,∠ BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在菱BB1上运动。

(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,在直棱柱中,的中点.

(1)求证:
(2)求证:
(3)在上是否存在一点,使得,若存在,试确定的位置,并判断与平面是否垂直?若不存在,请说明理由.

查看答案和解析>>

同步练习册答案