精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线中心在原点且一个焦点为 ,直线 与其相交于 两点, 中点的横坐标为 ,则此双曲线的方程是( )
A.
B.
C.
D.

【答案】B
【解析】设双曲线方程为 ,将 代入双曲线方程,整理得 ,由韦达定理得 ,则 .又 ,所以 ,所以双曲线的方程是 .故选B.

根据焦点坐标可知该双曲线焦点在x轴上,且c=,所以可设双曲线方程为:=1(a0,b0),将y=x-1代入双曲线方程并整理得到一个关于x的一元二次方程,设M(x1,y1),N(x2,y2),那么x1,x2是方程的根,根据韦达定理可得x1+x2,由中点坐标公式可知:=得到一个关于a,b的方程,再根据双曲线中a2+b2=c2解出a2,b2即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是一个以A1B1C1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知A1B1B1C1=2,A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:

()该几何体的体积;

()截面ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数满足,且在上是减函数, 是锐角三角形的两个内角,则的大小关系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 ,使得 .若“ 为真”,“ 为假”,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育集团为了办好人民满意的教育,每年底都随机邀请名学生家长代表对集团内甲、乙两所学校进行人民满意的民主测评(满意度最高分,最低分,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的数据如下:

甲校:

乙校:.

(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数;

(2)分别计算甲、乙两所学校去年人民满意度的方差;

(3)根据以上数据你认为这两所学校哪所学校人民满意度比较好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记数列的前项和为若存在实数,使得对任意的,都有,则称数列和有界数列”. 下列命题正确的是( )

A. 是等差数列,且首项,则和有界数列

B. 是等差数列,且公差,则和有界数列

C. 是等比数列,且公比,则和有界数列

D. 是等比数列,且和有界数列,则的公比

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在 上的奇函数,且其图象关于直线 对称,当 时, ,则 的值为( )
A.
B.0
C.1
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案