精英家教网 > 高中数学 > 题目详情

【题目】在一次数学竞赛中,30名参赛学生的成绩(百分制)的茎叶图如图所示:若将参赛学生按成绩由高到低编为1﹣30号,再用系统抽样法从中抽取6人,则其中抽取的成绩在[77,90]内的学生人数为(

A.2
B.3
C.4
D.5

【答案】C
【解析】解:由茎叶图可得30名学生的成绩如下:
94,94,92,92,91;90,90,88,88,87;
87,85,84,83,83;83,83,82,82,82;
81,80,78,78,77;73,72,71,70,70.
若用系统抽样,则需分6段,则第2,3,4,5区间段内抽取的学生成绩符合题意,有4人.
故选:C.
【考点精析】解答此题的关键在于理解茎叶图的相关知识,掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E:的焦距为2,一条准线方程为x=,A,B分别为椭圆的右顶点和上顶点,点P,Q在的椭圆上,且点P在第一象限.

(1)求椭圆E的标准方程;

(2)若点P,Q关于坐标原点对称,且PQ⊥AB,求四边形ABCD的面积;

(3)若AP,BQ的斜率互为相反数,求证:PQ斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 ,若圆上恰好存在两个点 ,他们到直线 的距离为 ,则称该圆为“完美型”圆.则下列圆中是“完美型”圆的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 方程 有两个不相等的负实根,

命题 不等式 的解集为

(1)若为真命题,求 的取值范围.

(2)若 为真命题, 为假命题,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中内动点P(x,y)到圆F:x2+(y﹣1)2=1的圆心F的距离比它到直线y=﹣2的距离小1.
(1)求动点P的轨迹方程;
(2)设点P的轨迹为曲线E,过点F的直线l的斜率为k,直线l交曲线E于A,B两点,交圆F于C,D两点(A,C两点相邻).
①若 =t ,当t∈[1,2]时,求k的取值范围;
②过A,B两点分别作曲线E的切线l1 , l2 , 两切线交于点N,求△ACN与△BDN面积之积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=x2+ax+b在(0,1)上有两个不同的零点,记min{m,n}= ,则min{h(0),h(1)}的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),其导函数为,设,则_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)给出定义:
设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.
某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数 ,请你根据上面探究结果,计算
=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的长轴长是短轴长的倍,右焦点为,点分别是该椭圆的上、下顶点,点是直线上的一个动点(与轴交点除外),直线交椭圆于另一点,记直线, 的斜率分别为

(1)当直线过点时,求的值;

(2)求的最小值.

查看答案和解析>>

同步练习册答案