精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点恰好是椭圆的右焦点.

1)求实数的值及抛物线的准线方程;

2)过点任作两条互相垂直的直线分别交抛物线点,求两条弦的弦长之和的最小值.

【答案】(1);(2)最小值为

【解析】

1)根据椭圆方程C:求出右焦点,即为抛物线的焦点,根据抛物线的焦点坐标与的关系式即可求出,最后得抛物线的准线方程.

2)根据题意设 的直线方程,将直线代入抛物线中,,根据韦达韦达定理求得,同理求得,+用基本不等式不等式即可求出最小值.

1)由已知椭圆C整理得,

所以焦点F的坐标为, 所以

所以抛物线E的准线方程为:

2)由题意知两条直线的斜率存在且不为零

设直线的斜率为,方程为,

的斜率为,方程为

,

因为,所以,,

所以同理得,

所以

当且仅当时取等号”,所以两条弦的弦长之和的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中

讨论函数的图象的交点个数;

若函数的图象无交点,设直线与的数的图象分别交于点P证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.

(1)求椭圆的方程;

(2)证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)在图中作出函数y =的图象,并求出其与直线围成的封闭图形的面积

(Ⅱ)若g(x)=|2x-a|+|x-1|.当+g(x)≥3对一切实数x恒成立,求实数a的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一块长方形区域,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.

1)求关于的函数关系式;

2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)与双曲线)有相同的焦点,点是两条曲线的一个交点,且轴,则该双曲线经过一、三象限的渐近线的倾斜角所在的区间是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a=3,,B=2A.

(Ⅰ)求cosA的值;

(Ⅱ)试比较∠B与∠C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),曲线在点处的切线方程为.

(1)求实数的值,并求的单调区间;

(2)试比较的大小,并说明理由;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,平面分别是线段的中点,

1)证明:平面

2)设点是线段的中点,求二面角的余弦值.

查看答案和解析>>

同步练习册答案