精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+lgx.
(Ⅰ)利用函数单调性的定义证明函数f(x)在(0,+∞)上是单调增函数;
(Ⅱ)证明方程f(x)=3在区间(1,10)上有实数解;
(Ⅲ)若x0是方程f(x)=3的一个实数解,且x0∈(k,k+1),求整数k的值.
分析:(Ⅰ)证明:设0<x1<x2,证明f(x1)-f(x2)<0即可;                                        
(Ⅱ)令g(x)=f(x)-3=x+lgx-3,
由g(1)g(10)=(-2)×8<0,利用函数零点的判定定理即可得出方程f(x)=3在(0,+∞)有实数解.        
(III)令g(x)=f(x)-3=x+lgx-3,
由g(2)g(3)=(lg2-1)×lg3<0,且函数y=g(x)在 (0,+∞)是单调递增的.即可得出函数g(x0有唯一的零点x0∈(2,3).可得k.
解答:(Ⅰ)证明:设0<x1<x2,则f(x1)-f(x2)=x1+lgx1-(x2+lgx2)=(x1-x2)+lg
x1
x2

∵设0<x1<x2,∴x1-x2<0,ln
x1
x2
<0
,∴f(x1)<f(x2).
∴函数f(x)在(0,+∞)上是单调增函数;                                        
(Ⅱ)令g(x)=f(x)-3=x+lgx-3,
∵g(1)g(10)=(-2)×8<0,且y=g(x)的图象在(1,10)是不间断的,
方程f(x)=3在(0,+∞)有实数解.        
(III)令g(x)=f(x)-3=x+lgx-3,
∵g(2)g(3)=(lg2-1)×lg3<0,且函数y=g(x)在 (0,+∞)是单调递增的.
∴函数g(x0有唯一的零点x0∈(2,3).
故k=2.
点评:熟练掌握函数单调性的定义、函数零点的判定定理等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案