ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÆäÇ°nÏîºÍΪSn£¬ÈôS4=10£¬S13=91£®
£¨1£©ÇóSn£»
£¨2£©ÈôÊýÁÐ{Mn}Âú×ãÌõ¼þ£ºM1=St1£¬µ±n¡Ý2ʱ£¬Mn=Stn-Stn-1£¬ÆäÖÐÊýÁÐ{tn}µ¥µ÷µÝÔö£¬ÇÒt1=1£¬tn¡ÊN*£®
¢ÙÊÔÕÒ³öÒ»×ét2£¬t3£¬Ê¹µÃM22=M1•M3£»
¢ÚÖ¤Ã÷£º¶ÔÓÚÊýÁÐ{an}£¬Ò»¶¨´æÔÚÊýÁÐ{tn}£¬Ê¹µÃÊýÁÐ{Mn}Öеĸ÷Êý¾ùΪһ¸öÕûÊýµÄƽ·½£®
¿¼µã£ºÊýÁÐÓ뺯ÊýµÄ×ÛºÏ,ÊýÁеÄÇóºÍ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓÃÒÑÖªÌõ¼þ£¬Áгö·½³Ì×飬ֱ½ÓÇó½âÊ×ÏîÓ빫²î£¬È»ºóÇóSn£»
£¨2£©£©¢Ùͨ¹ýM22=M1M3£¬Í¨¹ýt2=2£¬3£¬4·Ö±ðÇó½âÍƳöt3=13£¬¼´¿É£®
¢ÚÓÉ¢Ù£¬ÍƳöÒ»°ãµÄÈ¡tn=1+3+32+¡­+3n-1=
3n-1
2
£¬Í¨¹ýMn=Stn-Stn-1£¬»¯¼òÕûÀí£¬µÃµ½MnΪһÕûÊýƽ·½£®
½â´ð£º ½â£º£¨1£©ÉèÊýÁÐ{an}µÄÊ×ÏîΪa1£¬¹«²îΪd£¬
ÓÉS4=10£¬S13=91£¬µÃ
4a1+
4¡Á3
2
d=10
13a1+
13¡Á12
2
d=91
£¬¡­£¨2·Ö£©
½âµÃ
a1=1
d=1
£¬
ËùÒÔSn=na1+
n(n-1)
2
d=
n2+n
2
¡­£¨4·Ö£©
£¨2£©¢ÙÒòΪM1=S1=1£¬
Èôt2=2£¬M2=S2-S1=3-1=2£¬M3=St3-S2=
t3(t3+1)
2
-3
£¬
ÒòΪM22=M1M3£¬
ËùÒÔ
t3(t3+1)
2
-3=4
£¬t3£¨t3+1£©=14£¬´Ë·½³ÌÎÞÕûÊý½â£» ¡­£¨6·Ö£©
Èôt2=3£¬M2=S3-S1=6-1=5£¬M3=St3-S3=
t3(t3+1)
2
-6
£¬
ÒòΪM22=M1M3£¬
ËùÒÔ
t3(t3+1)
2
-6=25
£¬t3£¨t3+1£©=62£¬´Ë·½³ÌÎÞÕûÊý½â£»¡­£¨8·Ö£©
Èôt2=4£¬M2=S4-S1=10-1=9£¬M3=St3-S4=
t3(t3+1)
2
-10
£¬
ÒòΪM22=M1M3£¬
ËùÒÔ
t3(t3+1)
2
-10=81
£¬t3£¨t3+1£©=182£¬½âµÃt3=13£¬
ËùÒÔt2=4£¬t3=13Âú×ãÌâÒâ¡­£¨10·Ö£©
¢ÚÓÉ¢ÙÖªt1=1£¬t2=1+3£¬t3=1+3+32£¬ÔòM1=1£¬M2=32£¬M3=92£¬
Ò»°ãµÄÈ¡tn=1+3+32+¡­+3n-1=
3n-1
2
£¬¡­£¨13·Ö£©
´ËʱStn=
3n-1
2
(1+
3n-1
2
)
2
£¬Stn-1=
3n-1-1
2
(1+
3n-1-1
2
)
2
£¬
ÔòMn=Stn-Stn-1=
3n-1
2
(1+
3n-1
2
)
2
-
3n-1-1
2
(1+
3n-1-1
2
)
2
=(3n-1)2
£¬
ËùÒÔMnΪһÕûÊýƽ·½£®
Òò´Ë´æÔÚÊýÁÐ{tn}£¬Ê¹µÃÊýÁÐ{Mn}Öеĸ÷Êý¾ùΪһ¸öÕûÊýµÄƽ·½£®¡­£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊÇÓ뺯ÊýµÄ×ÛºÏÓ¦Ó㬷ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=cos2x+2psinx+qÓÐ×î´óÖµ6ºÍ×îСֵ3£¬ÇóʵÊýp£¬qµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÈýÌõÖ±Ïßl1£º4x+y+4=0£¬l2£ºmx+y+1=0£¬l3£ºx-y+1=0²»ÄÜΧ³ÉÈý½ÇÐΣ¬ÔòmµÄȡֵΪ£¨¡¡¡¡£©
A¡¢4»ò-1B¡¢1»ò-1
C¡¢-1»ò4D¡¢-1£¬1£¬4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬ÒÑÖª¡ÏBAC=90¡ã£¬AB=AC=1£¬AA1=3£¬µãE£¬F·Ö±ðÔÚÀâBB1£¬CC1ÉÏ£¬ÇÒC1F=
1
3
C1C£¬BE=¦ËBB1£¬0£¼¦Ë£¼1£®
£¨1£©µ±¦Ë=
1
3
ʱ£¬ÇóÒìÃæÖ±ÏßAEÓëA1FËù³É½ÇµÄ´óС£»
£¨2£©µ±Ö±ÏßAA1ÓëƽÃæAEFËù³É½ÇµÄÕýÏÒֵΪ
2
29
29
ʱ£¬Çó¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÈôË«ÇúÏߵĽ¥½üÏß·½³ÌÊÇy=¡À2x£¬ÇÒ¾­¹ýµã£¨
2
£¬2£©£¬Ôò¸ÃË«ÇúÏߵķ½³ÌÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔڵȲîÊýÁÐ{an}ÖУ¬Èôa3=2£¬a5=8£¬ÔòS7µÈÓÚ£¨¡¡¡¡£©
A¡¢16B¡¢18C¡¢35D¡¢22

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
¡¢
b
£¬|
a
|=1£¬|
b
|=1£¬£¼
a
£¬
b
£¾=
¦Ð
3
£¬Ôò|
a
-
b
|=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýy=loga£¨x+2£©-1£¨a£¾0ÇÒa¡Ù1£©µÄͼÏóºã¹ý¶¨µãA£¬ÈôµãAÔÚÖ±Ïßmx+ny+2=0ÉÏ£¬Ôòm2+n2µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µ±x=
 
ʱ£¬º¯Êýy=x2£¨2-x2£©ÓÐ×î
 
Öµ£¬ÇÒ×îÖµÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸