分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答 解:变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}}\right.$的可行域如图:
由z=x-2y得y=$\frac{1}{2}$x-$\frac{1}{2}z$,
平移直线y=$\frac{1}{2}$x-$\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}$x-$\frac{z}{2}$,过点A时,
直线y=$\frac{1}{2}$x-$\frac{z}{2}$的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x+2y=3}\\{4x-y=-6}\end{array}\right.$得A(-1,2),
代入目标函数z=x-2y,
得z=-1-4=-5.
∴目标函数z=x-2y的最小值是-5.
故答案为:-5.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | d<0 | B. | S19<0 | ||
C. | 当n=9时Sn取最小值 | D. | S10>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com