分析 设直线AB的方程与抛物线的方程联立,利用根与系数的关系可得x1+x2.再利用弦长公式|AB|=x1+x2+p,即可得到p.
解答 解:抛物线y2=2px的焦点F($\frac{p}{2}$,0),准线方程为x=-$\frac{p}{2}$
∴直线AB的方程为y=x-$\frac{p}{2}$,
代入y2=2px可得x2-3px+$\frac{{p}^{2}}{4}$=0
∴xA+xB=3p,
由抛物线的定义可知,AB=AF+BF=xA+xB+p=4p=8
∴p=2.
故答案为:2.
点评 本题考查了抛物线的定义、标准方程,以及简单性质的应用,考查直线与抛物线相交问题、焦点弦长问题、弦长公式,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | x+2y-4=0 | B. | x-2y=0 | C. | 2x-y-3=0 | D. | 2x-y+3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=3-2x | B. | f(x)=2-3x | C. | f(x)=3x-2 | D. | f(x)=3x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-5,-3) | B. | (5,3) | C. | (1,-1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com