精英家教网 > 高中数学 > 题目详情
长方体ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5,P是棱BC上一动点,则AP+PC1的最小值为
 
分析:长方体ABCD-A1B1C1D1中,P是棱BC上一动点,求AP+PC1的最小值可将以BC为相交棱的两个侧面展开成一个平面,从平面上可以看出当三点A、P、C1在一条直线上时,AP+PC1的值最小,此时线段恰好是直角三角形的斜边.由勾股定理求值即可.
解答:解:可将长方体的侧面沿棱B1C1展开成一个平面,则AP+PC1的最小值即为线段AC1的值,
又 AB=3,BC=4,AA1=5,故直角三角形AB1C1中两条直角边的长度分别为B1C1=4,AB1=8,
由公股定理得AC1=
42+82
=
80
=4
5

即AP+PC1的最小值为4
5

故答案为4
5
点评:本题考点是点、线、面间的距离计算,考查对长方体结构特征的了解,本题把求拆线长度的问题转变为求两点间距离的问题,将一个立体几何中求长度的问题转化为平面中两点线段的长度体现了数学中化归的思想,立体几何中的问题有不少都是借助化归思想将空间中的问题转化到平面中解决,大大降低了解题的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为10.
(1)求棱A1A的长;
(2)求点D到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,长方体ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中点,N是B1C1中点.
(1)求证:A1、M、C、N四点共面;
(2)求证:BD1⊥MCNA1
(3)求证:平面A1MNC⊥平面A1BD1
(4)求A1B与平面A1MCN所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 则三棱锥A1-ABC的体积为(  )
A、10B、20C、30D、35

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCD-A1B1C1D1,它是由一个长方体ABCD-A'B'C'D'切割而成,这个长方体的高为b,底面是边长为a的正方形,其中顶点A1,B1,C1,D1均为原长方体上底面A'B'C'D'各边的中点.
(1)若多面体面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;
(2)若a=4,b=2,求该多面体的体积;
(3)当a,b满足什么条件时AD1⊥DB1,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(1)求证:A1E⊥平面ADE;
(2)求三棱锥A1-ADE的体积.

查看答案和解析>>

同步练习册答案