精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD是直角梯形,∠BAD=∠ADC=90°,ECB的中点,AB=PA=AD=2CD,则AP与平面PDE所成角的正弦值为 ( )

A. B. C. D.

【答案】C

【解析】

A为原点,AD,AB,AP所在直线分别为x轴、y轴、z,建立空间直角坐标系,求得平面PDE的一个法向量,利用向量的夹角公式,即可求解.

A为原点,AD,AB,AP所在直线分别为x轴、y轴、z,建立空间直角坐标系,CD=1,P(0,0,2),D(2,0,0),E,A(0,0,0),=(0,0,2),=(-2,0,2),=.

设平面PDE的法向量为n=(a,b,c),

a=3,n=(3,2,3).

AP与平面PDE所成的角为θ,

sinθ===,AP与平面PDE所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=( 1x , 则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=( x3
其中所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差x(℃)

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再用被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2组数据的概率.

(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程.

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,江的两岸可近似的看成两平行的直线,江岸的一侧有A,B两个蔬菜基地,江的另一侧点C处有一个超市.已知A、B、C中任意两点间的距离为20千米.超市欲在AB之间建一个运输中转站D,A,B两处的蔬菜运抵D处后,再统一经过货轮运抵C处.由于A,B两处蔬菜的差异,这两处的运输费用也不同.如果从A处出发的运输费为每千米2元,从B处出发的运输费为每千米1元,货轮的运输费为每千米3元.

(1)设∠ADC=α,试将运输总费用S(单位:元)表示为α的函数S(α),并写出自变量的取值范围;
(2)问中转站D建在何处时,运输总费用S最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,设直线过点A( ),B(3, ),且直线与曲线C:ρ=2rsinθ(r>0)有且只有一个公共点,求实数r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线(a>b>0)的左、右焦点分别是F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为 ( )

A. B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分别是棱PA,CD的中点.

(1)求证:PC∥平面BMN;
(2)求证:平面BMN⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分别是棱PA,CD的中点.

(1)求证:PC∥平面BMN;
(2)求证:平面BMN⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为

(1)求圆的直角坐标方程和直线普通方程;

(2)设圆与直线交于点,若点的坐标为,求的值.

查看答案和解析>>

同步练习册答案