精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x-a
x2+2
(x∈R).
(1)当f(1)=1时,求函数f(x)的单调区间;
(2)设关于x的方程f(x)=
1
x
的两个实根为x1,x2,且-1≤a≤1,求|x1-x2|的最大值;
(3)在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.
分析:(1)先由f(1)=1解得a,用导数法研究单调性;(2)方程f(x)=
1
x
可化为x2-ax-2=0,△=a2+8>0,可知方程x2-ax-2=0有两不同的实根x1,x2,再由韦达定理建立|x1-x2|=
(x1+x22-4x1x2
=
a2+8
模型求解;(3)若不等式m2+tm+1≥|x1-x2|恒成立,
结合(2)可转化为m2+tm-2≥0,t∈[-1,1]都成立,再求g(t)=m2+tm-2最小值即可.
解答:解:(1)由f(1)=1得a=-1,
f′(x)=
2(x2+2)-2x(x+1)
(x2+2)2
=
-2(x2+x-2)
(x2+2)2
=
-2(x+2)(x-1)
(x2+2)2
≥0
-2≤x≤1,所以f(x)的减区间是(-∞,-2]和[1,+∞),增区间是[-2,1](5分)
(2)方程f(x)=
1
x
可化为x2-ax-2=0,△=a2+8>0
∴x2-ax-2=0有两不同的实根x1,x2
则x1+x2=a,x1x2=-2
∴|x1-x2|=
(x1+x22-4x1x2
=
a2+8

∵-1≤a≤1,∴当a=±1时,
∴|x1-x2|max=
a1+8
=3
(3)若不等式m2+tm+1≥|x1-x2|恒成立,
由(2)可得m2+tm+1≥3,对t∈[-1,1]都成立m2+tm-2≥0,t∈[-1,1],
设g(t)=m2+tm-2
若使t∈[-1,1]时g(t)≥0都成立,
g(-1)=-m+m2-2≥0
g(1)=m+m2-2≥0

解得:m≥2或m≤-2,所以m的取值范围是m≥2或m≤-2
点评:本题主要考查导数法研究单调性,一元二次方程根的问题及不等式恒成立问题,同时考查转化化归的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案