精英家教网 > 高中数学 > 题目详情
12.已知α,β是平面,a,b是直线,则下列命题中不正确的是(  )
A.若a∥b,a⊥α,则b⊥αB.若a∥α,α∩β=b,则a∥b
C.若a⊥α,a⊥β,则α∥βD.若a⊥α,a?β,则α⊥β

分析 对四个选项,分别进行判断,即可得出结论.

解答 解:A、若a∥b,a⊥α,根据线面垂直的性质,可得b⊥α,正确;
B、∵a不一定在平面β内,∴a,b有可能是异面直线,故不正确;
C、若a⊥α,a⊥β,∵垂直于同一直线的两平面平行,∴α∥β,显然正确;
D、a⊥α,a?β,根据平面与平面垂直的判定定理,可得α⊥β,正确.
故选:B.

点评 此题主要考查直线与平面、平面与平面平行、垂直的性质,属于概念性质理解的问题,题目比较简单且无计算量,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.5+12i的平方根3+2i或-3-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是“推理与证明”的知识结构图,如果要加入“归纳”,则应该放在(  )
A.“合情推理”的下位B.“演绎推理”的下位
C.“直接证明”的下位D.“间接证明”的下位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,甲到丙地再无其他路可走,则从甲地去丙地可选择的旅行方式有(  )
A.5种B.6种C.7种D.8种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=sinnxsinnx+cosnxcosnx-cosn2x,对任意x∈R都使f(x)为常数,则正整数n为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=x2-mx(m,x∈R).
(1)求证:f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)];
(2)设数列{an}的前n项和Sn=f(n)(n∈N*),且a1=2,从数列{an}中抽取a1,a2,a4,…a${\;}_{{2}^{n}}$,…依次构成数列{bn},的项,求{bn}的通项公式;
(3)在条件(2)下,数列cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设△ABC的角A,B,C所对的边分别是a,b,c,若$2acosB=c,sinAsinB={\frac{1}{2}}$,则△ABC为(  )
A.等边三角形B.等腰直角三角形
C.锐角非等边三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.
求证:(1)PA∥平面BDE 
(2)若四棱锥P-ABCD的所有棱长都等于a,求BE与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知[x]表示不大于x的最大整数,如[5,3]=5,[-1]=-1,执行如图的程序框图,则输出的i的值为6.

查看答案和解析>>

同步练习册答案