精英家教网 > 高中数学 > 题目详情
16.求下列函数的定义域:
(1)y=log3(4-2x);
(2)y=log${\;}_{\frac{1}{3}}$$\sqrt{3x-5}$.

分析 (1)要使该函数有意义,则需4-2x>0,解该不等式便可得出该函数的定义域;
(2)同样的方法,解3x-5>0便可得出该函数的定义域.

解答 解:(1)解4-2x>0得,x<2;
∴该函数定义域为(-∞,2);
(2)解3x-5>0得,x$>\frac{5}{3}$;
∴该函数的定义域为$(\frac{5}{3},+∞)$.

点评 考查函数定义域的概念及求法,清楚对数的真数大于0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知f(x)=ax(a>0且a≠1),若f(-3)>f(-π)则a的取值范围是(  )
A.a>0B.a>1C.a<0D.0<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=2x+x、y=1og3x+x、y=x-$\frac{1}{\sqrt{x}}$零点分别为a,b,c,则(  )
A.c>b>aB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x(x2-a)+$\frac{1}{x}$.
(1)证明:对任意a∈R,都有导函数f′(x)是偶函数;
(2)若g(x)=f(x)-$\frac{1}{x}$-$\frac{1}{9}$lnx,且a<0,讨论函数g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的最大值,并画出图象:
(1)f(x)=-x2+6x-1;
(2)f(x)=2x2-4x,x∈[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数y=logax的图象过点($\frac{1}{4}$,-2),则底a=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x1满足2010x+2010x=2,x2满足2010x+2010log2010(x-1)=2,则x1+x2=(  )
A.1B.$\frac{2011}{2010}$C.$\frac{1006}{1005}$D.$\frac{2013}{2010}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列四个命题:
(1)“?x∈R,x2-x+1≤0”的否定;
(2)“若x2+x-6≥0,则x>2”的否命题;
(3)在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的充分不必要条件;
(4)“k=2”是“函数f(x)=2x-(k2-3)•2-x为奇函数”的充要条件.
其中真命题的序号是(1),(2)(真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某学校安排3位老师与5名学生去3地参观学习,每地至少去1名老师和1名学生,则不同的安排方法总数为(  )
A.1800B.900C.300D.1440

查看答案和解析>>

同步练习册答案