精英家教网 > 高中数学 > 题目详情
已知抛物线x2=4y的焦点为F,过F任作直线l(l与x轴不平行)交抛物线分别于A,B两点,点A关于y轴对称点为C,
(1)求证:直线BC与y轴交点D必为定点;
(2)过A,B分别作抛物线的切线,两条切线交于E,求的最小值,并求当取最小值时直线l的方程.

【答案】分析:(1)设出直线l的方程,和抛物线方程联立后得到关于x的一元二次方程,利用根与系数关系得到两个交点A,B的横坐标的和与积,由对称性得到A关于y轴的对称点C,写出直线BC的方程后由线系方程可证过定点;
(2)求出函数的导函数,写出过A,B的切线方程,把两切线方程分别作差和作和后求出两切线焦点的纵坐标,则|DE|可求,由弦长公式求出|AB|,作比后利用基本不等式求最值,并求出取最小值时直线l的方程.
解答:(1)证明:设A(x1,y1),B(x2,y2),
∵抛物线的焦点为F(0,1),
∴可设直线l的方程为:y=kx+1(k≠0).
联立,消去y并整理得:x2-4kx-4=0
所以x1+x2=4k,x1x2=-4
由对称性知C(-x1,y1),
直线BC的方程为,即
∴直线BC与y轴交于定点D(0,-1)
(2),∴过点A的切线方程为:
即:①,同理可得过点B的切线方程为:

①-②得:(x1≠x2

①+②得:
=
=
∴y=-1.
∴E(2k,-1),|DE|=2|k|

,取等号时,k=±1,
直线l的方程为:y=x+1或y=-x+1.
点评:本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,考查抛物线的应用,关键是看清题中给出的条件,灵活运用韦达定理,中点坐标公式进行求解.这也是高考常考的知识点,该题是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知抛物线x2=4y的焦点F和点A(-1,8),点P为抛物线上一点,则|PA|+|PF|的最小值为
9

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知抛物线x2=4y的焦点F和点A(-1,8),P为抛物线上一点,则|PA|+|PF|的最小值是
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=4y上的点P(非原点)处的切线与x轴,y轴分别交于Q,R两点,F为焦点.
(Ⅰ)若
PQ
PR
,求λ.
(Ⅱ)若抛物线上的点A满足条件
PF
FA
,求△APR的面积最小值,并写出此时的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•温州一模)如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1上任取一点H,过H作HD垂直x轴于D,并交l于点E,过H作直线HF垂直直线l,并交x轴于点F.
(I)求证:|OC|=|DF|;
(II)试判断直线EF与抛物线的位置关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知抛物线x2=4y,圆C:x2+(y-2)2=4,M(x0,y0),(x0>0,y0>0)为抛物线上的动点.
(Ⅰ)若y0=4,求过点M的圆的切线方程;
(Ⅱ)若y0>4,求过点M的圆的两切线与x轴围成的三角形面积S的最小值.

查看答案和解析>>

同步练习册答案