【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
【答案】(1)见解析;(2)平均数的估计值为100,方差的估计值为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.
【解析】试题分析:(1)根据频数算出频率,得纵坐标,即可可做直方图;(2)每组数据中间值乘以该组的频率求和即可得这种产品质量指标值的平均数,再根据方差公式求其方差;(3)不低于的各组频率求和与进行比较即可。
试题解析:(1)
。
(2)质量指标值的样本平均数为
质量指标值的样本方差为:。
所以这种产品质量指标值的样本平均数的估计值为100,方差的估计值为104。
(3)质量指标值不低于95的产品所占比例的估计值为。由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定。
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若关于的不等式在上恒成立,求的取值范围;
(Ⅱ)设函数,在(Ⅰ)的条件下,试判断在上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若二次函数f(x)=ax2+bx+c的图象顶点坐标为(﹣1,﹣4)且f(0)=﹣3.
(1)求函数f(x)的解析式;
(2)若函数g(x)= ,画出函数g(x)图象并求单调区间;
(3)求函数g(x)在[﹣3,2]的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:
2 | 5 | 8 | 9 | 11 | |
12 | 10 | 8 | 8 | 7 |
(1)求出与的回归方程;
(2)判断与之间是正相关还是负相关;若该地1月份某天的最低气温为6,请用所求回归方程预测该店当日的营业额.
附: 回归方程中, ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点作的垂线交于另一点,若是的切线,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com