精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,方程为不相等的两个正数)所代表的曲线是( )

A. 三角形 B. 正方形 C. 非正方形的长方形 D. 非正方形的菱形

【答案】D

【解析】

解法一 直线将平面分成四个区域:

(I) (II)

(III) (IV)

在区域(I)中,方程(1)成为.(2)

它代表直线.令相交于点.则由

得点的坐标为.

相交于点,由

得点的坐标为.

因此,(1)代表的曲线在区域(I)中是线段.

同样,在区域(II)中,方程(1)成为,它代表直线相交于点相交于点,方程(1)代表的曲线在区域(II)中是一条线段.

同前,得点在(1)代表的曲线上,且(1)代表的曲线在区域(III)中是线段,(1)代表的曲线在区域(IV)中是线段.

又由于,所以,(1)代表的四边形是非正方形的菱形.故选D.

解法二 将直角坐标系绕原点逆时针旋转,得到新坐标系.点在坐标系中的坐标为,在坐标系中的坐标为.则

题中方程 (1)

化成. (2)

显然,(2)代表的曲线关于轴,轴对称,在的第I象限内,(2)成为,即为线段,其中.

据对称性,在第II象限内方程(2)是线段,其中

在第III象限内方程(2)是线段,其中

在第IV象限内方程(2)是线段.

由对称性知,.又由于,故.所以,是非正方形的菱形.故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面向量,满足,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为(

A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

(Ⅰ)若圆C与x轴相切,求圆C的方程;

(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设

(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;

(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉所著的详解九章算术一书中,用图的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和现将杨辉三角形中的奇数换成1,偶数换成0,得到图所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为,如,则  

A. 2 B. 4 C. 8 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:

乘坐站数

票价(元)

现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站,且他们各自在每个站下车的可能性是相同的.

(1)若甲、乙两人共付费元,则甲、乙下车方案共有多少种?

(2)若甲、乙两人共付费元,求甲比乙先到达目的地的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:

间隔时间/

10

11

12

13

14

15

等候人数y/

23

25

26

29

28

31

调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是恰当回归方程

1)从这组数据中随机选取2组数据,求选取的这组数据的间隔时间不相邻的概率;

2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是恰当回归方程

附:对于一组数据……,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 中,是正三角形,四边形ABCD是矩形,且平面平面.

(1)若点E是PC的中点,求证:平面BDE;

(2)若点F在线段PA上,且,当三棱锥的体积为时,求实数的值.

查看答案和解析>>

同步练习册答案