精英家教网 > 高中数学 > 题目详情

【题目】现有流量均为的两条河流汇合于某处后,不断混合,它们的含沙量分别为.假设从汇合处开始,沿岸设有若干个观测点,两股水流在流往相邻两个观测点的过程中,其混合效果相当于两股水流在1秒内交换的水量,其交换过程为从A股流入B的水量,经混合后,又从B股流入A水并混合,问从第几个观测点开始,两股河水的含沙量之差小于.(不考虑泥沙沉淀).

【答案】9

【解析】

设第n个观测点A股水流含沙量为,B股水流含沙量为bn.由已知我们易得是以为首项,为公比的等比数列.求出数列的通项公式后,构造不等式,解不不等式,即可得到结论.

解:设第n个观测点A股水流含沙量为,B股水流含沙量为

即:

是以为首项,为公比的等比数列.

解不等式

,又由n正整数,

因此,从第9个观测点开始,两股水流含沙量之差小于0.01kg/m3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,由半圆和部分抛物线合成的曲线称为“羽毛球开线”,曲线轴有两个焦点,且经过点

(1)的值;

(2)为曲线上的动点,求的最小值;

(3)且斜率为的直线羽毛球形线相交于点三点,问是否存在实数使得?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数定义已知偶函数的定义域为时,

1)求并求出函数的解析式;

2)若存在实数使得函数上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则“”是“”的充分不必要条件;

C.若随机变量服从二项分布:,

D.的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,对于一切,函数在区间内总存在唯一零点,求的取值范围;

2)若区间上是单调函数,求的取值范围;

3)当时,函数在区间内的零点为,判断数列的增减性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若同时满足以下条件:

在D上单调递减或单调递增;

存在区间,使 上的值域是,那么称为闭函数.

(1)求闭函数符合条件的区间

(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;

(3)若是闭函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜三棱柱中,底面是边长为的正三角形,侧棱长为,侧棱与底面相邻两边都成角,求此三棱柱的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,讨论的单调性;

(2)设时,若对任意,存在使,求实数取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个半径为1千米的扇形景点的平面示意图,.原有观光道路OC,且.为便于游客观赏,景点管理部门决定新建两条道路PQPA,其中P在原道路OC(不含端点OC)上,Q在景点边界OB上,且,同时维修原道路的OP段,因地形原因,新建PQ段、PA段的每千米费用分别是万元、万元,维修OP段的每千米费用是万元.

1)设,求所需总费用,并给出的取值范围;

2)当P距离O处多远时,总费用最小.

查看答案和解析>>

同步练习册答案