精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=4sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为π,设向量$\overrightarrow{a}$=(-1,f(x)),$\overrightarrow{b}$=(f(-x),1),g(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的递增区间;
(2)求函数g(x)在区间[$\frac{π}{8}$,$\frac{π}{3}$]上的最大值和最小值.

分析 (1)由条件利用正弦函数的周期性求得ω的值,可得f(x)的解析式,再利用正弦函数的单调性,求得函数f(x)的增区间.
(2)由条件利用两个向量的数量积公式求得g(x)的解析式,再利用正弦函数的定义域和值域求得函数g(x)在区间[$\frac{π}{8}$,$\frac{π}{3}$]上的最大值和最小值.

解答 解:(1)函数f(x)=4sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为$\frac{2π}{ω}$=π,∴ω=2,
函数f(x)=4sin(2x+$\frac{π}{4}$).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,故函数f(x)的增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
(2)g(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=-f(-x)+f(x)=-4sin(-2x+$\frac{π}{4}$)+4sin(2x+$\frac{π}{4}$)
=-4sin(-2x)cos$\frac{π}{4}$-4cos(-2x)sin$\frac{π}{4}$+4sin2xcos$\frac{π}{4}$+4cos2xsin$\frac{π}{4}$
=8sin2xsin$\frac{π}{4}$=4$\sqrt{2}$sin2x,
∵x∈[$\frac{π}{8}$,$\frac{π}{3}$],∴2x∈[$\frac{π}{4}$,$\frac{2π}{3}$],sin2x∈[$\frac{\sqrt{2}}{2}$,1],故f(x)∈[4,4$\sqrt{2}$],
故当2x=$\frac{π}{4}$时,f(x)取得最小值为4,当2x=$\frac{π}{2}$时,f(x)取得最大值为4$\sqrt{2}$.

点评 本题主要考查两个向量的数量积公式,正弦函数的周期性和单调性,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如果测得(x,y)的四组数值分别是A(1,3),B(2,3.8),C(3,5.2),D(4,6),则y与x之间的线性回归方程为(  )
A.$\widehat{y}$=1.04x+2B.$\widehat{y}$=1.04x+1.9C.$\widehat{y}$=1.05x+1.9D.$\widehat{y}$=1.9x+1.04

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列有关命题的叙述,
①若p∨q为真命题,则p∧q为真命题;
②“m>$\frac{1}{2}$”是$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2m-1}$=1为椭圆的充分必要条件;
③“若x+y=0,则是x,y互为相反数”的逆命题为真命题;
④命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x=2≠0”.
其中错误的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设3x-1,x,4x是等差数列{an}的前三项,则a4=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在四面体PABC中,PA、PB、PC两两垂直,且均相等,E是AB的中点,则异面直线AC与PE所成的角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的前n项和为Sn,当${S_n}={n^2}+2n$时,a4+a5=(  )
A.11B.20C.33D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.为了调查学生每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.样本容量1000的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为680.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2(2,0)与x轴垂直的直线交椭圆于点M,且|MF2|=3.
(1)求椭圆的标准方程;
(2)已知点P(0,1),问是否存在直线1与椭圆交于不同的两点A,B,且AB的垂直平分线恰好过P点?若存在,求出直线l斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设$\overrightarrow{a}$=(10,-4),$\overrightarrow{b}$=(3,1),$\overrightarrow{c}$=(-2,3).
(1)求证:$\overrightarrow{b}$,$\overrightarrow{c}$可以作为表示同一平面内的所有向量的一组基底;
(2)用$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{a}$.

查看答案和解析>>

同步练习册答案