精英家教网 > 高中数学 > 题目详情
已知方程
.
a
x2+
b
x+
c
=
0
,其中
a
b
c
是非零向量,且
a
b
不共线,则该方程(  )
分析:利用平面向量基本定理即可得出.
解答:解:∵方程
.
a
x2+
b
x+
c
=
0
,其中
a
b
c
是非零向量,且
a
b
不共线
c
=-x2
a
-x
b

由平面向量基本定理可得:存在(-x2,x)一对有序实数且非0使得等式成立.
∴该方程至少有一个解.
故选B.
点评:熟练掌握平面向量基本定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0),它们所表示的曲线可能是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知方程ax2+bx-1=0(a,b∈R且a>0,b>0)有两个实数根,其中一个根在区间(1,2)内,则a-b的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程ax2+bx-1=0(a,b∈R且a>0)有两个实数根,其中一个根在区间(1,2)内,则a-b的取值范围为
(-1,+∞)
(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0,它们所表示的曲线可能是(  )

查看答案和解析>>

同步练习册答案