精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数,其中a为常数.
(I)若x=1是函数的一个极值点,求a的值;
(II)若函数在区间(-1,0)上是增函数,求a的取值范围;
(III)若函数,在x=0处取得最大值,求正数a的取值范围.

1)a="2     " (2)a     (3)0<a

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分16分)
已知定义在上的函数,其中为大于零的常数.
(Ⅰ)当时,令
求证:当时,为自然对数的底数);
(Ⅱ)若函数,在处取得最大值,
的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
函数,其中为常数.
(1)证明:对任意的图象恒过定点;
(2)当时,判断函数是否存在极值?若存在,求出极值;若不存在,说明理由;
(3)若对任意时,恒为定义域上的增函数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)函数
(Ⅰ)若处的切线相互垂直,求这两个切线方程;
(Ⅱ)若单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-ax2+(2-a)x
(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f>f
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数
(1)求的单调区间;
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数.
(Ⅰ)设,讨论的单调性;
(Ⅱ)若对任意恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过坐标原点O,且在点 处的切线的斜率是5.
(1)求实数的值;
(2)求在区间上的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数=处取得极值.
(1)求实数的值;
(2) 若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3) 证明:.参考数据:

查看答案和解析>>

同步练习册答案