精英家教网 > 高中数学 > 题目详情
精英家教网如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(Ⅰ)证明:AB=AC;
(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.
分析:(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;
(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A-BD-C的平面角,在三角形AGC中求出GC即可.
解答:精英家教网解:如图
(I)连接BE,∵ABC-A1B1C1为直三棱柱,
∴∠B1BC=90°,
∵E为B1C的中点,∴BE=EC.
又DE⊥平面BCC1
∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,
∴AB=AC(相等的斜线段的射影相等).

(II)求B1C与平面BCD所成的线面角,
只需求点B1到面BDC的距离即可.
作AG⊥BD于G,连GC,则GC⊥BD,
∠AGC为二面角A-BD-C的平面角,∠AGC=60°
不妨设AC=2
3
,则AG=2,GC=4
在RT△ABD中,由AD•AB=BD•AG,易得AD=
6

设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.
利用
1
3
SB1BC•DE=
1
3
S△BCD•h

可求得h=2
3
,又可求得B1C=4
3
sinα=
h
B1C
=
1
2
,∴α=30°.
即B1C与平面BCD所成的角为30°.
点评:本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案