精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为 , 则三棱锥A﹣BCD的外接球的体积为

【答案】π
【解析】三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,
设长方体的三度为a,b,c,则由题意得:ab= , ac= , bc=
解得:a= , b= , c=1,
所以球的直径为:
所以球的半径为
所以三棱锥A﹣BCD的外接球的体积为
所以答案是:π
【考点精析】本题主要考查了球内接多面体的相关知识点,需要掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

【答案】A

【解析】

由题意可得 q1,且 an 0,由条件可得 a1a2…a13=4a1a2…a9,化简得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

等比数列{an}是递增数列,其前n项的积为Tn(n∈N*),若T13=4T9 ,设公比为q,

则由题意可得 q1,且 an >0.

∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

又由等比数列的性质可得 a8a15=a10a13=a11a12,∴a8a15=2.

故选:A.

【点睛】

本题主要考查等比数列的定义和性质,求得 a10a11a12a13=4是解题的关键.

型】单选题
束】
10

【题目】若直线y=2x上存在点(xy)满足约束条件,则实数m的最大值为

A. -1 B. 1 C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长AB=AD=2,AA1=3的长方体ABCDA1B1C1D1中,点E是平面BCC1B1上的动点,点F是CD的中点.试确定点E的位置,使D1E⊥平面AB1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),若在定义域内存在x0 , 使得f(﹣x0)=﹣f(x0)成立,则称x0为函数f(x)的局部对称点.
(1)若a,b,c∈R,证明函数f(x)=ax3+bx2+cx﹣b必有局部对称点;
(2)是否存在常数m,使得函数f(x)=4x﹣m2x+1+m2﹣3有局部对称点?若存在,求出m的范围,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,).在以坐标原点为极点轴正半轴为极轴的极坐标系中,曲线

(1)说明是哪一种曲线,并将的方程化为极坐标方程;

(2)直线的极坐标方程为,其中满足,若曲线的公共点都在 上,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+sinxcosx.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[0,]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0),e= , 其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为 , 且(其中λ>1).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足2Sn+an=1;递增的等差数列{bn}满足b1=1,b3=﹣4.
(1)求数列{an},{bn}的通项公式;
(2)若cn是an , bn的等比中项,求数列{}的前n项和Tn
(3)若ct2+2t﹣2对一切正整数n恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2-16x+q+3.

(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;

(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).

查看答案和解析>>

同步练习册答案